亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis

数据集 人工智能 水准点(测量) 灵敏度(控制系统) 集合(抽象数据类型) 计算机科学 试验装置 编码(集合论) 医疗保健 层析合成 机器学习 医学物理学 医学 乳腺摄影术 乳腺癌 癌症 地图学 内科学 工程类 经济 经济增长 程序设计语言 地理 电子工程
作者
Nicholas Konz,Mateusz Buda,Hanxue Gu,Ashirbani Saha,Jichen Yang,Jakub Chledowski,Jungkyu Park,Jan Witowski,Krzysztof J Geras,Yoel Shoshan,Flora Gilboa-Solomon,Daniel Khapun,Vadim Ratner,Ella Barkan,Michal Ozery-Flato,Robert Martí,Akinyinka Omigbodun,Chrysostomos Marasinou,Noor Nakhaei,William Hsu,Pranjal Sahu,Md Belayat Hossain,Juhun Lee,Carlos Santos,Artur Przelaskowski,Jayashree Kalpathy-Cramer,Benjamin Bearce,Kenny Cha,Keyvan Farahani,Nicholas Petrick,Lubomir Hadjiiski,Karen Drukker,Samuel G Armato,Maciej A Mazurowski
标识
DOI:10.1001/jamanetworkopen.2023.0524
摘要

An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide.To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods.This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021.The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes.A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926.In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的小霜完成签到,获得积分20
22秒前
Marciu33应助幸福的小霜采纳,获得10
34秒前
科研通AI2S应助幸福的小霜采纳,获得10
34秒前
36秒前
可爱的函函应助苦逼采纳,获得10
1分钟前
1分钟前
善良的冰颜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
苦逼发布了新的文献求助10
1分钟前
洛洛大方应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得20
1分钟前
嗯哼应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小花酱完成签到,获得积分10
1分钟前
乐乐乐乐乐乐应助kkk0908采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
田様应助高兴的亦凝采纳,获得10
2分钟前
2分钟前
科研通AI2S应助蔡从安采纳,获得10
2分钟前
今后应助酷酷一笑采纳,获得10
3分钟前
冷静初蓝完成签到,获得积分10
3分钟前
科研通AI2S应助冷静初蓝采纳,获得10
3分钟前
3分钟前
3分钟前
嗯哼应助科研通管家采纳,获得30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
不辣的完成签到 ,获得积分10
3分钟前
清脆靳完成签到,获得积分10
3分钟前
3分钟前
研友_850aeZ完成签到,获得积分10
4分钟前
拓跋从阳发布了新的文献求助10
4分钟前
丁的发布了新的文献求助10
4分钟前
莉莉斯完成签到 ,获得积分10
4分钟前
拓跋从阳完成签到,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531126
捐赠科研通 2622355
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650872