A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis

数据集 人工智能 水准点(测量) 灵敏度(控制系统) 集合(抽象数据类型) 计算机科学 试验装置 编码(集合论) 医疗保健 层析合成 机器学习 医学物理学 医学 乳腺摄影术 乳腺癌 癌症 地图学 内科学 工程类 经济 经济增长 程序设计语言 地理 电子工程
作者
Nicholas Konz,Mateusz Buda,Hanxue Gu,Ashirbani Saha,Jichen Yang,Jakub Chledowski,Jungkyu Park,Jan Witowski,Krzysztof J Geras,Yoel Shoshan,Flora Gilboa-Solomon,Daniel Khapun,Vadim Ratner,Ella Barkan,Michal Ozery-Flato,Robert Martí,Akinyinka Omigbodun,Chrysostomos Marasinou,Noor Nakhaei,William Hsu,Pranjal Sahu,Md Belayat Hossain,Juhun Lee,Carlos Santos,Artur Przelaskowski,Jayashree Kalpathy-Cramer,Benjamin Bearce,Kenny Cha,Keyvan Farahani,Nicholas Petrick,Lubomir Hadjiiski,Karen Drukker,Samuel G Armato,Maciej A Mazurowski
标识
DOI:10.1001/jamanetworkopen.2023.0524
摘要

An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide.To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods.This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021.The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes.A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926.In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助ttnnn采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
爆米花应助book思议采纳,获得30
3秒前
3秒前
Randall发布了新的文献求助10
4秒前
鹿诗筠完成签到,获得积分10
4秒前
6秒前
7秒前
无花果应助LONG采纳,获得10
7秒前
ZHAO完成签到,获得积分10
8秒前
和谐的孱完成签到,获得积分10
8秒前
小付发布了新的文献求助10
8秒前
简单雨柏发布了新的文献求助10
9秒前
一一发布了新的文献求助10
10秒前
Lucas应助笑点低的丹烟采纳,获得10
11秒前
焱焱发布了新的文献求助10
11秒前
上官若男应助vicar采纳,获得10
12秒前
djiwisksk66应助xiong_mandy采纳,获得10
13秒前
chancco发布了新的文献求助10
13秒前
13秒前
xingxing发布了新的文献求助10
14秒前
yyds应助鸭鸭酱采纳,获得100
15秒前
15秒前
研友_VZG7GZ应助儒雅的巧曼采纳,获得10
16秒前
zhangjian19237完成签到,获得积分10
16秒前
情怀应助执着的冰蓝采纳,获得10
17秒前
17秒前
小小发布了新的文献求助10
17秒前
18秒前
19秒前
费老五完成签到 ,获得积分10
19秒前
龍Ryu发布了新的文献求助10
20秒前
Jiayi完成签到 ,获得积分10
20秒前
20秒前
小王发布了新的文献求助10
21秒前
22秒前
冲冲冲完成签到 ,获得积分10
22秒前
Archer发布了新的文献求助10
23秒前
qxy完成签到 ,获得积分10
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281