Multilayer feature fusion and saliency-attention object tracking

人工智能 计算机科学 判别式 模式识别(心理学) 特征(语言学) 特征提取 计算机视觉 BitTorrent跟踪器 视频跟踪 眼动 目标检测 核(代数) 对象(语法) 数学 哲学 组合数学 语言学
作者
Lichao Wang,Yongjian Shang,Qingyang Cheng,Jiahui Dong,Shuqiao Geng
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (01)
标识
DOI:10.1117/1.jei.32.1.013051
摘要

Most of the existing Siamese network-based trackers achieve the similarity matching problem through the cross-correlation of convolutional features between the template branch and the search branch. However, the method of using the overall feature of the target as the convolution kernel to cross-correlate with the search area contains a lot of background information, which will adversely affect the tracking. To solve this problem, we propose a feature fusion and saliency-attention Siamese network (MSSiamCAR) for object tracking, adopting a part-based tracking strategy to track discriminative local salient regions in objects. This algorithm uses the ResNet-50 network to extract the target features. To solve the loss of the shallow part of the target due to the deepening of the network, a multilayer feature is proposed. The fusion module enhances the feature extraction ability of the network for the target. Second, a saliency capture module is proposed to obtain the local saliency of the target. These saliency are robust to interference factors. The saliency interaction module is designed, and the graph attention mechanism is used to establish an effective connection between the saliency, and the target feature information is propagated to the search feature so that the tracker has more discriminative ability to the target feature. Finally, the region proposal network is used to perform operations, such as classification, regression, and centrality calculation. Experiments on challenging benchmarks, including OTB-100, VOT2018, large-scale single object tracking (LaSOT), generic object tracking-10k (GOT-10k), and unmanned aerial vehicles 123 (UAV123), demonstrate that our proposed tracker performs favorably against state-of-the-art trackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡从安发布了新的文献求助10
1秒前
2秒前
我是老大应助枫叶采纳,获得30
2秒前
north发布了新的文献求助10
3秒前
伶俐的以晴完成签到,获得积分10
4秒前
dxd小郭发布了新的文献求助10
4秒前
4秒前
孟祥辉完成签到,获得积分20
4秒前
飞鸿雪花发布了新的文献求助10
5秒前
5秒前
5秒前
罗洛乐发布了新的文献求助10
6秒前
从容的白薇完成签到,获得积分20
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
Wfy应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
frap完成签到,获得积分0
8秒前
9秒前
小二郎应助武雨寒采纳,获得10
10秒前
斑ban发布了新的文献求助30
10秒前
琥珀主完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
蔡从安发布了新的文献求助10
16秒前
如意安青完成签到,获得积分10
16秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463232
求助须知:如何正确求助?哪些是违规求助? 3056669
关于积分的说明 9053216
捐赠科研通 2746523
什么是DOI,文献DOI怎么找? 1506979
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849