An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaolu完成签到,获得积分10
1秒前
juzi完成签到 ,获得积分10
2秒前
情怀应助bonbonly采纳,获得10
3秒前
fedehe发布了新的文献求助10
3秒前
Seathern完成签到,获得积分10
3秒前
英俊的铭应助xh采纳,获得10
4秒前
4秒前
7秒前
fedehe完成签到,获得积分10
7秒前
bunny发布了新的文献求助10
8秒前
szc-2000完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
有点is完成签到,获得积分10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
16秒前
禾火完成签到,获得积分20
16秒前
一只滦完成签到,获得积分10
16秒前
Nine完成签到 ,获得积分10
17秒前
pew发布了新的文献求助10
17秒前
杨小鸿发布了新的文献求助10
18秒前
nancylan发布了新的文献求助10
18秒前
青云发布了新的文献求助30
19秒前
唐很甜完成签到 ,获得积分10
19秒前
19秒前
啊呀呀完成签到,获得积分10
20秒前
danli完成签到,获得积分20
21秒前
在水一方应助汪宇采纳,获得10
22秒前
Pan发布了新的文献求助10
23秒前
苗条平萱完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
AJ完成签到 ,获得积分10
25秒前
30秒前
摸鱼仙人完成签到,获得积分10
32秒前
32秒前
Moonpie应助pew采纳,获得10
33秒前
mia完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742180
求助须知:如何正确求助?哪些是违规求助? 5406715
关于积分的说明 15344214
捐赠科研通 4883585
什么是DOI,文献DOI怎么找? 2625155
邀请新用户注册赠送积分活动 1574005
关于科研通互助平台的介绍 1530964