An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
小洋完成签到,获得积分10
3秒前
NIHAO完成签到,获得积分10
3秒前
Achhz发布了新的文献求助10
4秒前
LX完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
FadeSv完成签到,获得积分10
5秒前
sulin关注了科研通微信公众号
6秒前
NIHAO发布了新的文献求助10
6秒前
Chris发布了新的文献求助10
7秒前
不舍天真发布了新的文献求助10
7秒前
7秒前
酷波er应助熊猫采纳,获得10
7秒前
年轻迪奥发布了新的文献求助10
9秒前
9秒前
顾矜应助王艺霖采纳,获得10
9秒前
NI发布了新的文献求助10
10秒前
FIREWORK完成签到,获得积分10
10秒前
lwb完成签到,获得积分10
11秒前
11秒前
小洋关注了科研通微信公众号
11秒前
搜集达人应助LBQ采纳,获得10
12秒前
求知的周发布了新的文献求助30
16秒前
16秒前
彩色耳机完成签到,获得积分10
16秒前
平常兰发布了新的文献求助10
17秒前
17秒前
麦地娜发布了新的文献求助10
18秒前
19秒前
烟花应助害羞的天真采纳,获得10
19秒前
EliGolden完成签到,获得积分10
20秒前
义气的翅膀完成签到,获得积分10
21秒前
21秒前
AAA房地产小王完成签到,获得积分10
21秒前
21秒前
情情晴情情完成签到,获得积分10
22秒前
迷路雨寒应助张瑶采纳,获得100
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049