An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助学习猴采纳,获得10
1秒前
twq发布了新的文献求助10
1秒前
烟花应助YUAN采纳,获得10
1秒前
传奇3应助学习猴采纳,获得10
3秒前
彭于晏应助纯情的馒头采纳,获得10
6秒前
LLLnna完成签到,获得积分10
7秒前
ren完成签到,获得积分10
8秒前
8秒前
可耐的冰巧完成签到,获得积分10
9秒前
9秒前
14秒前
15秒前
风清扬发布了新的文献求助10
15秒前
君知行发布了新的文献求助10
15秒前
16秒前
18秒前
小刘同学发布了新的文献求助10
19秒前
KCC发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助XiaoZhu采纳,获得10
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
22秒前
y1439938345完成签到,获得积分10
23秒前
陶醉迎南完成签到,获得积分10
24秒前
24秒前
25秒前
顾懂发布了新的文献求助10
26秒前
26秒前
秋水揽星河完成签到,获得积分10
26秒前
orixero应助君知行采纳,获得10
26秒前
26秒前
zhoujunjie完成签到,获得积分10
27秒前
111发布了新的文献求助10
27秒前
杰里西完成签到,获得积分20
27秒前
勤劳绿柳完成签到 ,获得积分10
27秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348