An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助光亮邴采纳,获得10
刚刚
刚刚
刚刚
阿木木发布了新的文献求助10
1秒前
CipherSage应助asss采纳,获得10
2秒前
2秒前
人类之光完成签到,获得积分10
2秒前
2秒前
完美世界应助陈乔采纳,获得10
2秒前
swy发布了新的文献求助10
3秒前
3秒前
hhhhhh完成签到,获得积分10
4秒前
4秒前
大头完成签到 ,获得积分10
6秒前
yyyq0721发布了新的文献求助10
6秒前
6秒前
7秒前
Luke Gee完成签到 ,获得积分10
8秒前
CodeCraft应助无异常采纳,获得10
9秒前
钵钵鸡完成签到,获得积分10
10秒前
11秒前
超大玻璃瓶完成签到 ,获得积分10
11秒前
16秒前
忧郁的鸵鸟完成签到,获得积分20
16秒前
汉堡包应助爱学习的鼠鼠采纳,获得10
20秒前
sk发布了新的文献求助50
20秒前
21秒前
胡桃桃完成签到,获得积分10
22秒前
哈哈哈完成签到 ,获得积分10
22秒前
好久不见完成签到,获得积分20
23秒前
CodeCraft应助hj采纳,获得10
23秒前
25秒前
无异常发布了新的文献求助10
26秒前
26秒前
孟子完成签到,获得积分20
27秒前
顾矜应助好久不见采纳,获得10
28秒前
corre发布了新的文献求助10
29秒前
孟子发布了新的文献求助10
30秒前
32秒前
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233011
求助须知:如何正确求助?哪些是违规求助? 2879662
关于积分的说明 8212270
捐赠科研通 2547168
什么是DOI,文献DOI怎么找? 1376574
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067