亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助JD采纳,获得10
1秒前
usora发布了新的文献求助10
2秒前
2秒前
852应助如意小丸子采纳,获得10
5秒前
5秒前
一粟完成签到 ,获得积分10
6秒前
8秒前
虎啸天123发布了新的文献求助10
9秒前
usora完成签到,获得积分10
9秒前
Aroma完成签到,获得积分10
12秒前
12秒前
苹果安露发布了新的文献求助10
15秒前
15秒前
16秒前
谢傲安发布了新的文献求助10
16秒前
无花果应助璐璐姐最牛逼采纳,获得10
20秒前
王一完成签到,获得积分10
22秒前
22秒前
慕青应助九尾采纳,获得10
24秒前
wang完成签到,获得积分10
24秒前
25秒前
27秒前
现代CC完成签到 ,获得积分10
28秒前
31秒前
32秒前
sissiarno应助科研通管家采纳,获得50
35秒前
852应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
36秒前
李健应助科研通管家采纳,获得10
36秒前
36秒前
李骞发布了新的文献求助10
36秒前
王云云完成签到 ,获得积分10
37秒前
谢傲安完成签到,获得积分20
39秒前
打打应助小王聪明蛋采纳,获得30
40秒前
姜姗完成签到,获得积分10
41秒前
火火火木完成签到 ,获得积分10
41秒前
54秒前
Murphy完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253441
求助须知:如何正确求助?哪些是违规求助? 4416791
关于积分的说明 13750469
捐赠科研通 4289194
什么是DOI,文献DOI怎么找? 2353310
邀请新用户注册赠送积分活动 1350007
关于科研通互助平台的介绍 1309854