An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
为你等候完成签到,获得积分10
刚刚
若水三芊完成签到,获得积分10
1秒前
Silence完成签到,获得积分0
1秒前
NiL完成签到,获得积分10
1秒前
VV完成签到,获得积分10
1秒前
3秒前
爱因斯坦克完成签到 ,获得积分10
3秒前
4秒前
BowieHuang应助豌豆射手采纳,获得10
4秒前
当女遇到乔完成签到 ,获得积分10
4秒前
4秒前
奋斗的万怨完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
王加一关注了科研通微信公众号
7秒前
田様应助QQ采纳,获得10
7秒前
8秒前
everyone_woo完成签到,获得积分10
8秒前
橘子发布了新的文献求助10
9秒前
ziyu完成签到,获得积分10
9秒前
公西翠萱完成签到,获得积分10
9秒前
hei完成签到 ,获得积分10
9秒前
LZ完成签到 ,获得积分10
10秒前
ZRL完成签到,获得积分10
11秒前
David123完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
冇_完成签到 ,获得积分10
12秒前
12秒前
tristaxlr完成签到 ,获得积分10
13秒前
几一昂完成签到 ,获得积分10
13秒前
12完成签到,获得积分20
13秒前
G1997完成签到 ,获得积分10
14秒前
天天快乐应助搞怪元彤采纳,获得10
14秒前
天想月完成签到,获得积分10
14秒前
鱼儿完成签到,获得积分10
14秒前
EMMA完成签到,获得积分10
15秒前
狂野的厉完成签到,获得积分10
15秒前
柠柠完成签到 ,获得积分10
15秒前
别斑秃了完成签到 ,获得积分10
15秒前
陶醉的又夏完成签到 ,获得积分10
16秒前
被迫躺平的卷王完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689