An Adaptive and Dynamical Neural Network for Machine Remaining Useful Life Prediction

人工神经网络 计算机科学 人工智能 机器学习
作者
Ruibing Jin,Duo Zhou,Min Wu,Xiaoli Li,Zhenghua Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1093-1102 被引量:9
标识
DOI:10.1109/tii.2023.3254656
摘要

Recently, many neural networks have been proposed for machine remaining useful life (RUL) prediction. However, most network architectures of the existing approaches are fixed. Since the sequential information depends on the input data and distributes differently, these fixed networks that cannot be dynamically adjusted according to the input data may not be able to capture this sequential information well, resulting in suboptimal performances. To mitigate this issue, we propose an adaptive and dynamical neural network (AdaNet), which can dynamically adjust its architecture according to the input data. A neural network is generally determined by kernel size, depth, and channel size. In this article, we aim to enable our proposed AdaNet to adjust its kernel size and channel size dynamically. First, we explore to adapt the deformable convolution to time-series data, which allows the convolutional kernel to change according to the feature map. With this deformable convolution, the convolutional kernels in the AdaNet become adjustable, which is beneficial to fully exploit the sequential information in time-series data, leading to accurate RUL prediction. In addition, a channel selection module is devised, which can selectively activate the feature channel according to the input, further improving the performance of our AdaNet. Extensive experiments have been carried out on the C-MAPSS dataset, demonstrating that our proposed AdaNet achieves state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花啊拾肆完成签到,获得积分10
刚刚
1秒前
1秒前
Warwick完成签到,获得积分10
2秒前
2秒前
搞怪莫茗发布了新的文献求助10
2秒前
科目三应助寒冷的咖啡采纳,获得10
3秒前
张参发布了新的文献求助10
3秒前
hejing完成签到,获得积分10
3秒前
yang_keai完成签到,获得积分10
3秒前
多吃香菜完成签到,获得积分10
5秒前
dora332211发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
guozizi发布了新的文献求助20
6秒前
古月发布了新的文献求助10
6秒前
zigzag发布了新的文献求助10
7秒前
百川海纳6发布了新的文献求助10
7秒前
8秒前
wanci应助王鹏飞采纳,获得10
8秒前
kww发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
lll发布了新的文献求助10
9秒前
小宋完成签到,获得积分10
10秒前
10秒前
bbdd2334发布了新的文献求助10
11秒前
11秒前
张雷应助自觉南风采纳,获得10
11秒前
demom完成签到 ,获得积分10
12秒前
zigzag完成签到,获得积分10
12秒前
z_king_d_23发布了新的文献求助10
13秒前
13秒前
急聘行完成签到,获得积分10
14秒前
APPLE完成签到 ,获得积分10
14秒前
坨坨完成签到,获得积分10
15秒前
奋斗梦旋完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600