Compression after multiple impact strength of composite laminates prediction method based on machine learning approach

有限元法 极限学习机 计算机科学 复合数 Boosting(机器学习) 结构健康监测 艾氏冲击强度试验 压缩(物理) 人工神经网络 结构工程 机器学习 算法 材料科学 复合材料 工程类 极限抗拉强度
作者
Jingyu Zhao,Ben Wang,Qihui Lyu,Weihua Xie,Zaoyang Guo,Bing Wang
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:136: 108243-108243 被引量:15
标识
DOI:10.1016/j.ast.2023.108243
摘要

The intelligent structural health monitoring system that can evaluate the structural safety online is the future development trend, in which the strength online prediction is the key step. This study developed a machine learning (ML) method to predict the compression-after-impact (CAI) strength of carbon/glass hybrid laminates subjected to multiple impacts at different impact positions online, which can help to find and replace damaged materials quickly to prevent irreversible disasters caused by accidental impact. Firstly, a finite element model verified by experiments was established to obtain the data of training ML model. Secondly, the eXtreme Gradient Boosting (XGBoost) model was utilized to predict the CAI strength of the composites subjected to multiple impacts at different distances between impact positions (DBIP). In addition, the feature importance of impact parameters based on the SHapley Additive exPlanations (SHAP) method was also studied. The results showed that the prediction accuracy and efficiency of ML-based method were better than that of FEM. Impact energy was the most significant factor affecting CAI strength, and DBIP cannot be ignored. The proposed method has great potential in online structural integrity monitoring systems of high-performance composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助随机昵称采纳,获得10
1秒前
1秒前
Ava应助阳光晟睿采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
打打应助淡水美人鱼采纳,获得10
3秒前
3秒前
meiting发布了新的文献求助10
3秒前
3秒前
4秒前
bkagyin应助SCIAI采纳,获得10
4秒前
义气冷菱完成签到,获得积分10
5秒前
nns关闭了nns文献求助
5秒前
之仔饼发布了新的文献求助10
5秒前
左左应助VPProokie采纳,获得20
5秒前
ezra许完成签到,获得积分10
5秒前
酷波er应助zhao采纳,获得10
5秒前
纯情的书蝶完成签到,获得积分10
6秒前
6秒前
cici发布了新的文献求助10
6秒前
6秒前
蒺藜发布了新的文献求助10
6秒前
客服Saki酱发布了新的文献求助30
7秒前
xiaobai发布了新的文献求助10
7秒前
7秒前
敏敏哇发布了新的文献求助10
7秒前
gUssan完成签到,获得积分10
7秒前
songjin完成签到 ,获得积分10
7秒前
8秒前
科研通AI5应助文静的嫣娆采纳,获得10
8秒前
8秒前
高高烙完成签到,获得积分10
8秒前
马某某某某某完成签到,获得积分10
8秒前
Crane发布了新的文献求助10
9秒前
9秒前
MRBBN发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319