The ability of machine learning algorithms to predict defibrillation success during cardiac arrest: A systematic review

医学 除颤 机器学习 算法 奇纳 观察研究 自然循环恢复 内科学 人工智能 心脏病学 重症监护医学 急诊医学 复苏 心肺复苏术 计算机科学 心理干预 精神科
作者
Matthew Sem,Emanuel Mastrangelo,David Lightfoot,Theresa Aves,Steve Lin,Rohit Mohindra
出处
期刊:Resuscitation [Elsevier]
卷期号:185: 109755-109755 被引量:1
标识
DOI:10.1016/j.resuscitation.2023.109755
摘要

Objective To evaluate the existing knowledge on the effectiveness of machine learning (ML) algorithms in predicting defibrillation success during in- and out-of-hospital cardiac arrest. Methods MEDLINE, Embase, CINAHL and Scopus were searched from inception to August 30, 2022. Studies were included that utilized ML algorithms for prediction of successful defibrillation, observed as return of spontaneous circulation (ROSC), survival to hospital or discharge, or neurological status at discharge. Studies were excluded if involving a trauma, an unknown underlying rhythm, an implanted cardiac defibrillator or if focused on the prediction or onset of cardiac arrest. Risk of bias was assessed using the PROBAST tool. Results There were 2399 studies identified, of which 107 full text articles were reviewed and 15 observational studies (n = 5680) were included for final analysis. 29 ECG waveform features were fed into 15 different ML combinations. The best performing ML model had an accuracy of 98.6 (98.5 – 98.7)%, with 4 second ECG intervals. An algorithm incorporating end-tidal CO2 reported an accuracy of 83.3% (no CI reported). Meta-analysis was not performed due to heterogeneity in study design, ROSC definitions, and characteristics. Conclusion Machine learning algorithms, specifically Neural Networks, have been shown to have potential to predict defibrillation success for cardiac arrest with high sensitivity and specificity. Due to heterogeneity, inconsistent reporting, and high risk of bias, it is difficult to conclude which, if any, algorithm is optimal. Further clinical studies with standardized reporting of patient characteristics, outcomes, and appropriate algorithm validation are still required to elucidate this. PROSPERO 2020 CRD42020148912.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的峻熙完成签到 ,获得积分10
1秒前
1秒前
123完成签到,获得积分20
2秒前
2秒前
过滤膜发布了新的文献求助10
3秒前
PANDA发布了新的文献求助10
4秒前
4秒前
斯文媚颜发布了新的文献求助10
4秒前
dizi_88完成签到 ,获得积分10
5秒前
敏感的芷完成签到,获得积分20
5秒前
冲鸭发布了新的文献求助10
6秒前
LL完成签到,获得积分10
7秒前
HXL完成签到 ,获得积分10
7秒前
7秒前
科目三应助么子采纳,获得10
8秒前
上官若男应助paprika采纳,获得10
8秒前
平常亦凝完成签到,获得积分20
9秒前
敏感的芷发布了新的文献求助10
9秒前
科研通AI2S应助威武的板凳采纳,获得10
10秒前
入江发布了新的文献求助10
11秒前
高鑫完成签到 ,获得积分10
11秒前
mm完成签到,获得积分10
11秒前
陈槊诸完成签到 ,获得积分10
12秒前
gg完成签到,获得积分10
13秒前
毕加索求索完成签到,获得积分10
14秒前
lxdx完成签到,获得积分10
14秒前
张豪杰发布了新的文献求助10
14秒前
科研通AI2S应助Steven采纳,获得10
14秒前
Becky完成签到,获得积分10
15秒前
胖胖玩啊玩完成签到 ,获得积分10
16秒前
16秒前
19秒前
张嘟嘟发布了新的文献求助10
20秒前
我爱科研发布了新的文献求助20
20秒前
菠萝吹雪发布了新的文献求助10
21秒前
威武的板凳完成签到,获得积分20
21秒前
星辰大海应助张继国采纳,获得10
21秒前
22秒前
么子完成签到,获得积分10
22秒前
赘婿应助Yingkun_Xu采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175