The ability of machine learning algorithms to predict defibrillation success during cardiac arrest: A systematic review

医学 除颤 机器学习 算法 奇纳 观察研究 自然循环恢复 内科学 人工智能 心脏病学 重症监护医学 急诊医学 复苏 心肺复苏术 计算机科学 心理干预 精神科
作者
Matthew Sem,Emanuel Mastrangelo,David Lightfoot,Theresa Aves,Steve Lin,Rohit Mohindra
出处
期刊:Resuscitation [Elsevier BV]
卷期号:185: 109755-109755 被引量:1
标识
DOI:10.1016/j.resuscitation.2023.109755
摘要

Objective To evaluate the existing knowledge on the effectiveness of machine learning (ML) algorithms in predicting defibrillation success during in- and out-of-hospital cardiac arrest. Methods MEDLINE, Embase, CINAHL and Scopus were searched from inception to August 30, 2022. Studies were included that utilized ML algorithms for prediction of successful defibrillation, observed as return of spontaneous circulation (ROSC), survival to hospital or discharge, or neurological status at discharge. Studies were excluded if involving a trauma, an unknown underlying rhythm, an implanted cardiac defibrillator or if focused on the prediction or onset of cardiac arrest. Risk of bias was assessed using the PROBAST tool. Results There were 2399 studies identified, of which 107 full text articles were reviewed and 15 observational studies (n = 5680) were included for final analysis. 29 ECG waveform features were fed into 15 different ML combinations. The best performing ML model had an accuracy of 98.6 (98.5 – 98.7)%, with 4 second ECG intervals. An algorithm incorporating end-tidal CO2 reported an accuracy of 83.3% (no CI reported). Meta-analysis was not performed due to heterogeneity in study design, ROSC definitions, and characteristics. Conclusion Machine learning algorithms, specifically Neural Networks, have been shown to have potential to predict defibrillation success for cardiac arrest with high sensitivity and specificity. Due to heterogeneity, inconsistent reporting, and high risk of bias, it is difficult to conclude which, if any, algorithm is optimal. Further clinical studies with standardized reporting of patient characteristics, outcomes, and appropriate algorithm validation are still required to elucidate this. PROSPERO 2020 CRD42020148912.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助10采纳,获得10
刚刚
嗡嗡完成签到,获得积分10
刚刚
1秒前
MrH完成签到,获得积分10
1秒前
1秒前
z掌握一下完成签到,获得积分10
1秒前
wulin314发布了新的文献求助20
2秒前
小蘑菇应助HAL9000采纳,获得10
2秒前
2秒前
hhm发布了新的文献求助10
2秒前
穆易羊完成签到 ,获得积分10
3秒前
在水一方应助Gnor采纳,获得10
3秒前
3秒前
4秒前
lqkcqmu发布了新的文献求助10
4秒前
z掌握一下发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
852应助杭啊采纳,获得10
5秒前
5秒前
vikki发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
在水一方应助小马过河采纳,获得10
7秒前
molec完成签到,获得积分10
7秒前
蜡笔小舒完成签到,获得积分10
7秒前
8秒前
俭朴的新柔完成签到,获得积分10
8秒前
曹国庆完成签到 ,获得积分10
9秒前
9秒前
百里丹珍完成签到,获得积分10
9秒前
10秒前
10秒前
hokin33发布了新的文献求助10
11秒前
JM完成签到,获得积分10
12秒前
12秒前
okil2完成签到,获得积分10
12秒前
子唯完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650