浸出(土壤学)
电化学
三元运算
无机化学
材料科学
化学
环境科学
电极
土壤科学
计算机科学
物理化学
土壤水分
程序设计语言
作者
Liming Yang,Zhe Gao,Tian Liu,Meiting Huang,Guang‐Zhen Liu,Yufa Feng,Penghui Shao,Xubiao Luo
标识
DOI:10.1021/acs.est.3c00287
摘要
Recovering lithium from lithium batteries (LIBs) is a promising approach for sustainable ternary lithium battery (T-LIB) development. Current lithium recovery methods from spent T-LIBs mainly concentrated on chemical leaching methods. However, chemical leaching relying on the additional acid seriously threatens the global environment and nonselective leaching also leads to low Li recovery purity. Here, we first reported a direct electro-oxidation method for lithium leaching from spent T-LIBs (Li0.8Ni0.6Co0.2Mn0.2O2); 95.02% of Li in the spent T-LIBs was leached under 2.5 V in 3 h. Meanwhile, nearly 100% Li recovery purity was also achieved, attributed to no other metal leaching and additional agents. We also clarified the relationship between lithium leaching and other metals during the electro-oxidation of spent T-LIBs. Under the optimized voltage, Ni and O maintain the electroneutrality in the structure assisting Li leaching, while Co and Mn maintain their valence states. A direct electro-oxidation Li leaching approach achieves high Li recovery purity and meanwhile overcomes the secondary pollution problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI