已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Algorithm for Real-Time Aluminum Profile Surface Defects Detection Based on Lightweight Network Structure

计算机科学 嵌入 卷积(计算机科学) 算法 GSM演进的增强数据速率 频道(广播) 实时计算 人工智能 人工神经网络 计算机网络
作者
Junlong Tang,Shenbo Liu,Dongxue Zhao,Lijun Tang,Wanghui Zou,Bin Zheng
出处
期刊:Metals [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 507-507 被引量:2
标识
DOI:10.3390/met13030507
摘要

Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection with ensured detection accuracy. Based on the YOLOv5s framework, a lightweight network model is designed by adding the attention mechanism and depth-separable convolution for the detection of aluminum. The lightweight network model improves the limitations of the YOLOv5s framework regarding to its detection accuracy and detection speed. The backbone network GCANet is built based on the Ghost module, in which the Attention mechanism module is embedded in the AC3Ghost module. A compression of the backbone network is achieved, and more channel information is focused on. The model size is further reduced by compressing the Neck network using a deep separable convolution. The experimental results show that, compared to YOLOv5s, the proposed method improves the mAP by 1.76%, reduces the model size by 52.08%, and increases the detection speed by a factor of two. Furthermore, the detection speed can reach 17.4 FPS on Nvidia Jeston Nano’s edge test, which achieves real-time detection. It also provides the possibility of embedding devices for real-time industrial inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
66289完成签到 ,获得积分10
1秒前
5秒前
宝玉发布了新的文献求助10
6秒前
ning发布了新的文献求助10
12秒前
taozi完成签到,获得积分20
12秒前
14秒前
Zhengzhang完成签到 ,获得积分10
16秒前
顾矜应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
yx_cheng应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
舒伯特完成签到 ,获得积分10
19秒前
23秒前
24秒前
薄荷梨发布了新的文献求助10
25秒前
圈圈完成签到 ,获得积分10
27秒前
小肥吴发布了新的文献求助10
27秒前
Hello应助博修采纳,获得10
29秒前
彭于晏应助yxf采纳,获得10
29秒前
大模型应助平常从蓉采纳,获得10
30秒前
蜂蜜罐头完成签到 ,获得积分10
31秒前
32秒前
35秒前
35秒前
36秒前
36秒前
LINDY发布了新的文献求助30
37秒前
bbdd2334发布了新的文献求助10
39秒前
17381362015发布了新的文献求助10
39秒前
晓湫发布了新的文献求助10
39秒前
可爱的函函应助小肥吴采纳,获得10
42秒前
46秒前
LLX发布了新的文献求助10
47秒前
酷炫的凤妖完成签到 ,获得积分10
48秒前
过时的热狗完成签到 ,获得积分10
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603