计算机科学
嵌入
卷积(计算机科学)
算法
GSM演进的增强数据速率
频道(广播)
实时计算
人工智能
人工神经网络
计算机网络
作者
Junlong Tang,Shenbo Liu,Dongxue Zhao,Lijun Tang,Wanghui Zou,Bin Zheng
出处
期刊:Metals
[MDPI AG]
日期:2023-03-02
卷期号:13 (3): 507-507
被引量:2
摘要
Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection with ensured detection accuracy. Based on the YOLOv5s framework, a lightweight network model is designed by adding the attention mechanism and depth-separable convolution for the detection of aluminum. The lightweight network model improves the limitations of the YOLOv5s framework regarding to its detection accuracy and detection speed. The backbone network GCANet is built based on the Ghost module, in which the Attention mechanism module is embedded in the AC3Ghost module. A compression of the backbone network is achieved, and more channel information is focused on. The model size is further reduced by compressing the Neck network using a deep separable convolution. The experimental results show that, compared to YOLOv5s, the proposed method improves the mAP by 1.76%, reduces the model size by 52.08%, and increases the detection speed by a factor of two. Furthermore, the detection speed can reach 17.4 FPS on Nvidia Jeston Nano’s edge test, which achieves real-time detection. It also provides the possibility of embedding devices for real-time industrial inspection.
科研通智能强力驱动
Strongly Powered by AbleSci AI