An Algorithm for Real-Time Aluminum Profile Surface Defects Detection Based on Lightweight Network Structure

计算机科学 嵌入 卷积(计算机科学) 算法 GSM演进的增强数据速率 频道(广播) 实时计算 人工智能 人工神经网络 计算机网络
作者
Junlong Tang,Shenbo Liu,Dongxue Zhao,Lijun Tang,Wanghui Zou,Bin Zheng
出处
期刊:Metals [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 507-507 被引量:2
标识
DOI:10.3390/met13030507
摘要

Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection with ensured detection accuracy. Based on the YOLOv5s framework, a lightweight network model is designed by adding the attention mechanism and depth-separable convolution for the detection of aluminum. The lightweight network model improves the limitations of the YOLOv5s framework regarding to its detection accuracy and detection speed. The backbone network GCANet is built based on the Ghost module, in which the Attention mechanism module is embedded in the AC3Ghost module. A compression of the backbone network is achieved, and more channel information is focused on. The model size is further reduced by compressing the Neck network using a deep separable convolution. The experimental results show that, compared to YOLOv5s, the proposed method improves the mAP by 1.76%, reduces the model size by 52.08%, and increases the detection speed by a factor of two. Furthermore, the detection speed can reach 17.4 FPS on Nvidia Jeston Nano’s edge test, which achieves real-time detection. It also provides the possibility of embedding devices for real-time industrial inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
苹果紊发布了新的文献求助20
1秒前
1秒前
生蚝发布了新的文献求助10
1秒前
1秒前
3秒前
mimi完成签到,获得积分10
3秒前
啵啵完成签到 ,获得积分10
3秒前
希望天下0贩的0应助豆包采纳,获得10
3秒前
思源应助冷静采纳,获得10
4秒前
科研通AI2S应助小丸子采纳,获得10
5秒前
小文完成签到,获得积分10
5秒前
wuhu完成签到 ,获得积分10
5秒前
5秒前
5秒前
桐桐应助陈先生采纳,获得10
5秒前
ala完成签到,获得积分10
6秒前
wuwuwuwuwuwu发布了新的文献求助10
6秒前
救了个命发布了新的文献求助10
6秒前
Vanilla应助轻松的盼兰采纳,获得20
6秒前
Mm完成签到,获得积分10
6秒前
6秒前
Zyy完成签到 ,获得积分10
7秒前
7秒前
绿绿发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
浮云发布了新的文献求助20
12秒前
科研通AI6应助all采纳,获得10
12秒前
科芒发布了新的文献求助10
12秒前
12秒前
13秒前
妮妮发布了新的文献求助10
13秒前
科研通AI2S应助为阿达采纳,获得10
13秒前
不一发布了新的文献求助10
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942443
求助须知:如何正确求助?哪些是违规求助? 4208117
关于积分的说明 13080731
捐赠科研通 3987172
什么是DOI,文献DOI怎么找? 2182916
邀请新用户注册赠送积分活动 1198583
关于科研通互助平台的介绍 1110931