Anomaly detection in Internet of medical Things with Blockchain from the perspective of deep neural network

计算机科学 自编码 互联网 异常检测 块链 数据挖掘 特征(语言学) 人工智能 计算机安全 计算机网络 交通分类 认证(法律) 人工神经网络 机器学习 万维网 哲学 语言学
作者
Jun Wang,Hanlei Jin,Junxiao Chen,Jinghua Tan,Kaiyang Zhong
出处
期刊:Information Sciences [Elsevier BV]
卷期号:617: 133-149 被引量:29
标识
DOI:10.1016/j.ins.2022.10.060
摘要

IoMT technology has many advantages in healthcare system, such as optimizing the medical service model, improving the efficiency of hospital operation and management, and improving the overall service level of the hospital. IoMT devices do not have a security authentication mechanism, and the trust between devices relies heavily on centralized third-party services. Blockchain can provide a secure interactive environment for the medical Internet of Things. However, security issues in the IoMT-Blockchain environment are also becoming increasingly prominent. Cyber-attacks targeting IoMT-Blockchain will not only compromise the security of IoT devices, but also seriously affect the security of the Internet. Therefore, how to detect abnormal traffic in the IoMT-Blockchain environment becomes particularly important. In this work, an abnormal traffic detection with deep neural network is designed for abnormal traffic detection in IoMT-Blockchain environment. First, this work proposes a feature extraction algorithm based on multi-model autoencoders. The algorithm processes the feature information in groups to reduce the complexity between traffic feature information. It builds a multi-model autoencoder to further extract fusion features between multi-model features. Second, to maximize use of traffic data information in detection network, this work proposes a multi-feature sequence anomaly detection algorithm. The algorithm extracts low-level fusion features and high-level temporal features in network traffic respectively, and applies the features to anomaly detection and classification tasks by means of residual learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助章鱼哥采纳,获得10
刚刚
lfjh完成签到,获得积分10
1秒前
CAOHOU应助00采纳,获得10
2秒前
阿欣完成签到,获得积分20
3秒前
3秒前
充电宝应助淡蓝蓝蓝采纳,获得10
4秒前
djiwisksk66应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
YamDaamCaa应助科研通管家采纳,获得30
4秒前
Akim应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
YamDaamCaa应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
思源应助科研通管家采纳,获得10
5秒前
foceman发布了新的文献求助10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
CAOHOU应助黑黑黑采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得20
5秒前
sisthan发布了新的文献求助10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Water应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
7秒前
蓝琉雨完成签到,获得积分10
7秒前
半城微凉应助任性雪冥采纳,获得10
7秒前
7秒前
7秒前
我是老大应助皂皂采纳,获得10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126