Anomaly detection in Internet of medical Things with Blockchain from the perspective of deep neural network

计算机科学 自编码 互联网 异常检测 块链 数据挖掘 特征(语言学) 人工智能 计算机安全 计算机网络 交通分类 认证(法律) 人工神经网络 机器学习 万维网 语言学 哲学
作者
Jun Wang,Hanlei Jin,Junxiao Chen,Jinghua Tan,Kaiyang Zhong
出处
期刊:Information Sciences [Elsevier]
卷期号:617: 133-149 被引量:17
标识
DOI:10.1016/j.ins.2022.10.060
摘要

IoMT technology has many advantages in healthcare system, such as optimizing the medical service model, improving the efficiency of hospital operation and management, and improving the overall service level of the hospital. IoMT devices do not have a security authentication mechanism, and the trust between devices relies heavily on centralized third-party services. Blockchain can provide a secure interactive environment for the medical Internet of Things. However, security issues in the IoMT-Blockchain environment are also becoming increasingly prominent. Cyber-attacks targeting IoMT-Blockchain will not only compromise the security of IoT devices, but also seriously affect the security of the Internet. Therefore, how to detect abnormal traffic in the IoMT-Blockchain environment becomes particularly important. In this work, an abnormal traffic detection with deep neural network is designed for abnormal traffic detection in IoMT-Blockchain environment. First, this work proposes a feature extraction algorithm based on multi-model autoencoders. The algorithm processes the feature information in groups to reduce the complexity between traffic feature information. It builds a multi-model autoencoder to further extract fusion features between multi-model features. Second, to maximize use of traffic data information in detection network, this work proposes a multi-feature sequence anomaly detection algorithm. The algorithm extracts low-level fusion features and high-level temporal features in network traffic respectively, and applies the features to anomaly detection and classification tasks by means of residual learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
调研昵称发布了新的文献求助10
1秒前
1秒前
1秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
1秒前
1秒前
CodeCraft应助Mumu采纳,获得10
2秒前
飘逸数据线完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
Gauss完成签到,获得积分0
2秒前
丘奇完成签到,获得积分10
2秒前
木子发布了新的文献求助10
2秒前
标致的方盒完成签到,获得积分10
2秒前
3秒前
致橡树完成签到,获得积分20
3秒前
Yolo发布了新的文献求助10
3秒前
yyy完成签到,获得积分20
4秒前
4秒前
4秒前
yoon发布了新的文献求助10
4秒前
脑洞疼应助香蕉静芙采纳,获得10
4秒前
JTB完成签到,获得积分10
4秒前
5秒前
慕涔发布了新的文献求助10
5秒前
王磊完成签到,获得积分10
5秒前
梧桐的灯完成签到 ,获得积分10
5秒前
传奇3应助轩辕德地采纳,获得10
5秒前
Arnold完成签到,获得积分20
5秒前
倪妮发布了新的文献求助10
6秒前
Island完成签到,获得积分10
6秒前
LiZheng完成签到,获得积分10
6秒前
深情安青应助致橡树采纳,获得10
7秒前
Leeon完成签到,获得积分10
7秒前
李来仪完成签到,获得积分10
7秒前
打打应助unicornmed采纳,获得10
7秒前
Eddy发布了新的文献求助10
8秒前
体贴远山完成签到,获得积分10
9秒前
顾矜应助贤惠的正豪采纳,获得10
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762