Anomaly detection in Internet of medical Things with Blockchain from the perspective of deep neural network

计算机科学 自编码 互联网 异常检测 块链 数据挖掘 特征(语言学) 人工智能 计算机安全 计算机网络 交通分类 认证(法律) 人工神经网络 机器学习 万维网 语言学 哲学
作者
Jun Wang,Hanlei Jin,Junxiao Chen,Jinghua Tan,Kaiyang Zhong
出处
期刊:Information Sciences [Elsevier]
卷期号:617: 133-149 被引量:17
标识
DOI:10.1016/j.ins.2022.10.060
摘要

IoMT technology has many advantages in healthcare system, such as optimizing the medical service model, improving the efficiency of hospital operation and management, and improving the overall service level of the hospital. IoMT devices do not have a security authentication mechanism, and the trust between devices relies heavily on centralized third-party services. Blockchain can provide a secure interactive environment for the medical Internet of Things. However, security issues in the IoMT-Blockchain environment are also becoming increasingly prominent. Cyber-attacks targeting IoMT-Blockchain will not only compromise the security of IoT devices, but also seriously affect the security of the Internet. Therefore, how to detect abnormal traffic in the IoMT-Blockchain environment becomes particularly important. In this work, an abnormal traffic detection with deep neural network is designed for abnormal traffic detection in IoMT-Blockchain environment. First, this work proposes a feature extraction algorithm based on multi-model autoencoders. The algorithm processes the feature information in groups to reduce the complexity between traffic feature information. It builds a multi-model autoencoder to further extract fusion features between multi-model features. Second, to maximize use of traffic data information in detection network, this work proposes a multi-feature sequence anomaly detection algorithm. The algorithm extracts low-level fusion features and high-level temporal features in network traffic respectively, and applies the features to anomaly detection and classification tasks by means of residual learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨tong发布了新的文献求助10
3秒前
3秒前
LamChem完成签到,获得积分10
7秒前
小冰发布了新的文献求助10
7秒前
神内打工人完成签到 ,获得积分10
8秒前
Jasper应助邵辛采纳,获得10
9秒前
形同陌路完成签到,获得积分10
10秒前
11秒前
lyjwghh完成签到,获得积分10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
12秒前
修仙应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
14秒前
1111完成签到,获得积分10
15秒前
赘婿应助七月采纳,获得10
15秒前
15秒前
17秒前
迟梨发布了新的文献求助10
18秒前
单纯的勒完成签到 ,获得积分10
19秒前
莫mo完成签到,获得积分10
21秒前
动力小滋发布了新的文献求助10
21秒前
弹棉花完成签到,获得积分10
22秒前
心落失完成签到,获得积分10
22秒前
研友_8RyB3Z发布了新的文献求助10
23秒前
Rita发布了新的文献求助10
23秒前
24秒前
Hello应助形同陌路采纳,获得10
24秒前
26秒前
26秒前
宇是眼中星眸完成签到 ,获得积分10
26秒前
动力小滋完成签到,获得积分10
27秒前
七月发布了新的文献求助10
28秒前
尊敬的半梅完成签到 ,获得积分10
28秒前
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919