Anomaly detection in Internet of medical Things with Blockchain from the perspective of deep neural network

计算机科学 自编码 互联网 异常检测 块链 数据挖掘 特征(语言学) 人工智能 计算机安全 计算机网络 交通分类 认证(法律) 人工神经网络 机器学习 万维网 哲学 语言学
作者
Jun Wang,Hanlei Jin,Junxiao Chen,Jinghua Tan,Kaiyang Zhong
出处
期刊:Information Sciences [Elsevier]
卷期号:617: 133-149 被引量:29
标识
DOI:10.1016/j.ins.2022.10.060
摘要

IoMT technology has many advantages in healthcare system, such as optimizing the medical service model, improving the efficiency of hospital operation and management, and improving the overall service level of the hospital. IoMT devices do not have a security authentication mechanism, and the trust between devices relies heavily on centralized third-party services. Blockchain can provide a secure interactive environment for the medical Internet of Things. However, security issues in the IoMT-Blockchain environment are also becoming increasingly prominent. Cyber-attacks targeting IoMT-Blockchain will not only compromise the security of IoT devices, but also seriously affect the security of the Internet. Therefore, how to detect abnormal traffic in the IoMT-Blockchain environment becomes particularly important. In this work, an abnormal traffic detection with deep neural network is designed for abnormal traffic detection in IoMT-Blockchain environment. First, this work proposes a feature extraction algorithm based on multi-model autoencoders. The algorithm processes the feature information in groups to reduce the complexity between traffic feature information. It builds a multi-model autoencoder to further extract fusion features between multi-model features. Second, to maximize use of traffic data information in detection network, this work proposes a multi-feature sequence anomaly detection algorithm. The algorithm extracts low-level fusion features and high-level temporal features in network traffic respectively, and applies the features to anomaly detection and classification tasks by means of residual learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lccccc完成签到,获得积分10
1秒前
2秒前
Mei完成签到,获得积分20
2秒前
白河发布了新的文献求助10
3秒前
好嘞完成签到 ,获得积分10
5秒前
5秒前
LTT发布了新的文献求助10
5秒前
青橘短衫完成签到,获得积分10
5秒前
6秒前
芋你呀发布了新的文献求助10
9秒前
huangyu完成签到,获得积分10
9秒前
9秒前
鳗鱼不尤完成签到,获得积分10
10秒前
罗马没有马完成签到 ,获得积分10
11秒前
helen李发布了新的文献求助10
12秒前
爱咋咋地发布了新的文献求助10
12秒前
HXY完成签到 ,获得积分10
12秒前
紧张的谷槐完成签到,获得积分10
12秒前
华仔应助乐观幻儿采纳,获得10
13秒前
14秒前
都要多喝水完成签到,获得积分10
16秒前
阔达的老太完成签到 ,获得积分10
16秒前
蓝桉完成签到,获得积分10
16秒前
16秒前
kingdirt完成签到,获得积分10
17秒前
ING完成签到,获得积分10
19秒前
latata发布了新的文献求助10
20秒前
欣喜宛亦完成签到 ,获得积分10
20秒前
20秒前
yu完成签到,获得积分10
21秒前
paopao发布了新的文献求助10
22秒前
23秒前
QAQ77发布了新的文献求助10
23秒前
25秒前
南湖完成签到 ,获得积分10
25秒前
25秒前
杨lan完成签到 ,获得积分10
27秒前
27秒前
hhy完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329