Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries

材料科学 插层(化学) 电化学 密度泛函理论 阴极 储能 电极 电化学储能 纳米技术 化学物理 工程物理 无机化学 超级电容器 热力学 计算化学 物理化学 工程类 物理 功率(物理) 化学
作者
Da Wang,Yao Jiao,Wei Shi,Bowei Pu,Fanghua Ning,Yi Jin,Yuan Ren,Jia Yu,Yajie Li,Hongxia Wang,Biao Li,Yutao Li,Ce‐Wen Nan,Liquan Chen,Siqi Shi
出处
期刊:Progress in Materials Science [Elsevier BV]
卷期号:133: 101055-101055 被引量:56
标识
DOI:10.1016/j.pmatsci.2022.101055
摘要

The ion-intercalation-based rechargeable batteries are emerging as the most efficient energy storage technology for electronic vehicles, grids, and portable devices. These devices require rechargeable batteries with higher energy–density than commercial Li-ion batteries, which are intrinsically limited by specific capacities and electrochemical potentials of transition-metal (M) electrode materials. Over the past decades, a significant number of studies have focused on exploring coordination environments and electronic origins of these materials based on ligand field theory (LFT). However, studies to understand and manipulate the relationship between their local-structural characteristics and electrochemical properties are limited. In this review, we comprehensively discussed how the combining of LFT and first-principles calculations can be used to derive Fermi levels that determine electrochemical potential, crystal field stabilization energy, and anionic redox activity. Based on this, a series of strategies are proposed to improve the phase-stability and energy–density of intercalation-type electrode materials, such as ion-intercalation potential tuning of rigid-band systems and electrode phase stability regulations with different M periods. Two high energy–density cathode materials, M-free LiBCF2 and Li-free group-VB/VIB MX2 (X = S, Se), are successfully designed from the aforementioned principles derived. Finally, we also highlight further directions for designing better intercalation-type materials based on LFT and their opportunities/challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
panpanliumin完成签到,获得积分0
2秒前
2秒前
希望天下0贩的0应助ch采纳,获得10
2秒前
3秒前
puppyNk发布了新的文献求助10
3秒前
高高的涔发布了新的文献求助10
3秒前
万能图书馆应助魔幻灵槐采纳,获得10
4秒前
Clover完成签到,获得积分10
5秒前
crack发布了新的文献求助10
7秒前
小刘紧张发布了新的文献求助10
7秒前
桐桐应助we采纳,获得10
7秒前
熙泽完成签到,获得积分10
8秒前
JY完成签到,获得积分10
9秒前
11秒前
puppyNk完成签到,获得积分10
12秒前
14秒前
xiaoyang应助刘善行采纳,获得10
14秒前
科研通AI5应助秦彻采纳,获得10
15秒前
16秒前
爆米花应助plastic2024采纳,获得10
16秒前
bankxiu发布了新的文献求助10
16秒前
无心的若山完成签到,获得积分10
16秒前
zhlh发布了新的文献求助10
20秒前
20秒前
却依然发布了新的文献求助30
21秒前
昏睡小吕完成签到,获得积分20
21秒前
丰富青完成签到,获得积分20
21秒前
Xi完成签到,获得积分10
23秒前
23秒前
24秒前
任大师兄应助愤怒的qiang采纳,获得10
24秒前
26秒前
魔幻灵槐发布了新的文献求助10
27秒前
文艺怀蝶发布了新的文献求助10
27秒前
顺心凡完成签到,获得积分10
28秒前
顾矜应助gdh采纳,获得10
28秒前
踏实无敌应助谭杰采纳,获得10
28秒前
可以完成签到,获得积分10
29秒前
BingbingYan关注了科研通微信公众号
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794