聚合
光化学
自由基聚合
化学
单体
高分子化学
链式转移
共价键
本体聚合
光催化
聚合物
催化作用
有机化学
作者
Q. Li,Rui Zhao,Zhen Lu,Longqiang Xiao,Linxi Hou
标识
DOI:10.1016/j.mtchem.2022.101253
摘要
Heterogeneous photocatalytic polymerization has emerged as a successful method for the development of greener reversible deactivation radical polymerization protocols. In this article, a halogen-free covalent organic framework (1,3,6,8-tetrakis(4-aminophenyl) pyrene-1,3,6,8-tetrakis(4-formylphenyl) pyrene-covalent organic framework [TAPPy-TFPPy-COF]) based on imine bonds was prepared, which mediated reversible complexation-mediated polymerization of methacrylates for the synthesis of various polymers with controllable molecular weight and relatively uniform distribution under white light-emitting diode light irradiation. TAPPy-TFPPy-COF absorbed the energy from photo and was transformed to excited state (COF•), and then the energy transfer occurred between COF• and initiator 2-iodo-2-methylpropionitrile (CP-I), which cleaved the carbon-iodine bond of CP-I to generate carbon radicals, thereby initiating the polymerization reaction. The density function theory calculation suggests that the coordination of iodine of CP-I with nitrogen on TAPPy-TFPPy-COF significant decrease the bond dissociation energy, making the polymerization more efficiency. The monomer conversion and reaction time showed a linear kinetic relationship of first order. The number average molecular weight of the obtained polymers increased along with the monomer conversion rate, and in good agreement with theoretical molecular weight, indicating a high frequency of the activation-deactivation cycle. The obtained polymer has high chain end fidelity, which can be used to synthesize various block copolymers. This work provided a new direction for the development of heterogeneous catalysts for reversible complexation-mediated polymerization.
科研通智能强力驱动
Strongly Powered by AbleSci AI