Causal Discovery on Discrete Data via Weighted Normalized Wasserstein Distance

噪音(视频) 数学 条件概率分布 度量(数据仓库) 条件期望 统计 算法 模式识别(心理学) 人工智能 计算机科学 数据挖掘 图像(数学)
作者
Wei Yi,Xiaofei Li,Lihui Lin,Daiyin Zhu,Qingyong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4911-4923 被引量:1
标识
DOI:10.1109/tnnls.2022.3213641
摘要

The task of causal discovery from observational data (X,Y) is defined as the task of deciding whether X causes Y , or Y causes X or if there is no causal relationship between X and Y . Causal discovery from observational data is an important problem in many areas of science. In this study, we propose a method to address this problem when the cause-and-effect relationship is represented by a discrete additive noise model (ANM). First, assuming that X causes Y , we estimate the conditional distributions of the noise given X using regression. Similarly, assuming that Y causes X , we also estimate the conditional distributions of noise given Y . Based on the structural characteristics of the discrete ANM, we find that the dissimilarity of the conditional distributions of noise in the causal direction is smaller than that in the anticausal direction. Then, we propose a weighted normalized Wasserstein distance to measure the dissimilarity of the conditional distributions of noise. Finally, we propose a decision rule for casual discovery by comparing two computed weighted normalized Wasserstein distances. An empirical investigation demonstrates that our method performs well on synthetic data and outperforms state-of-the-art methods on real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
木木应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
凡迪亚比应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助沸羊羊采纳,获得10
1秒前
3秒前
4秒前
6秒前
zengyl发布了新的文献求助10
9秒前
9秒前
zhouzehua1003发布了新的文献求助10
10秒前
欢檬应助优秀的枕头采纳,获得10
12秒前
13秒前
13秒前
zengyl完成签到,获得积分10
16秒前
icm发布了新的文献求助10
17秒前
18秒前
GAO完成签到,获得积分10
18秒前
CipherSage应助Erika采纳,获得10
19秒前
等待的易文完成签到 ,获得积分10
21秒前
丘山完成签到,获得积分10
21秒前
23秒前
英姑应助思维隋采纳,获得10
23秒前
羊村黑恶势力完成签到,获得积分10
24秒前
在水一方应助花花采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710