吸附
乙二胺四乙酸
化学
降级(电信)
催化作用
金属
金属有机骨架
结晶紫
复合数
化学工程
核化学
无机化学
螯合作用
材料科学
有机化学
复合材料
工程类
病理
电信
医学
计算机科学
作者
Yue Gao,Lifeng Yao,Shengzu Zhang,Qinyan Yue,Weiyan Yin
标识
DOI:10.1016/j.envpol.2022.120622
摘要
The metal-organic frameworks/cotton fabric composites (MOFs/CFCs) have emerged as a new type of prospective materials for environmental cleanup, due to their convenient recyclability and high removal efficiency towards hazardous pollutants. However, their practical applications are limited by complicated synthetic conditions, insufficient interface bonding and poor adsorption capacity. Herein, for the first time, a robust ethylenediaminetetraacetic acid (EDTA)-functionalized MOFs/CFC is prepared based on UiO-66-NH2 crystals by using EDTA dianhydride as the cross-linking agent, and applied for simultaneous removal of heavy metals and dyes, as well as degradation of chemical warfare agents. The as-prepared EDTA-UiO-66-NH2/CFC shows extraordinary monocomponent adsorption performance with maximum adsorption capacity of 158.7, 126.2, 131.5, 117.4 and 104.5 mg/g for Cd(II), Cu(II), methylene blue, crystal violet and safranin O, respectively. Interestingly, in metal-dyes binary system, the uptake of Cu(II) by EDTA-UiO-66-NH2/CFC increases significantly when co-existing high concentration of dyes. The results indicate that the synergistic and simultaneous removal of both dyes and metal from complex systems can be realized by EDTA-UiO-66-NH2/CFC via multiple mechanisms. The EDTA-UiO-66-NH2/CFC also exhibits an outstanding catalytic performance for degrading dimethyl 4-nitrophenylphosphate. Besides, it can be reused for several times without obvious decrease of its adsorption and catalysis efficiencies. More impressively, the cross-linking reaction approach can not only anchor UiO-66-NH2 crystals firmly onto cotton fabric, but also facilitate in-situ formation of abundant adsorption sties on the adsorbent surface. Therefore, this work offers a simple and versatile synthetic strategy to develop high-performance environmental material for multiple pollutants remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI