Minimum‐variance recursive state estimation for complex networks with stochastic switching topologies and random quantization under try‐once‐discard protocol

网络拓扑 量化(信号处理) 估计员 协方差 数学 计算机科学 随机过程 伯努利原理 控制理论(社会学) 数学优化 算法 统计 人工智能 工程类 航空航天工程 操作系统 控制(管理)
作者
Bing Xu,Jun Hu,Xiaojian Yi,Dongyan Chen,Hui Yu,Zhihui Wu
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
卷期号:37 (1): 105-125 被引量:1
标识
DOI:10.1002/acs.3513
摘要

Summary This article is concerned with the issue of minimum‐variance recursive state estimation (MVRSE) for a class of nonlinear dynamical complex networks (NDCNs) with stochastic switching topologies and random quantization under the try‐once‐discard (TOD) protocol. Two sequences of Bernoulli distributed random variables with given occurrence probabilities are utilized to characterize the stochastic switching manners of network topologies and the randomly occurring quantized output measurements, where the quantization effects are portrayed by the uniform quantizer. Moreover, the TOD protocol is adopted to arrange the order of the information transmission of network nodes so as to alleviate the communication burden and mitigate the network congestions. The focus of the MVRSE issue is to develop a novel state estimation algorithm such that, for all stochastic switching topologies, random quantization effects and TOD protocol, an optimized upper bound of the estimation error covariance is guaranteed by properly designing the estimator gain. In addition, the theoretical proof is derived, which illustrates that the state estimation error is exponentially mean‐square bounded under certain conditions. Meanwhile, we also present the related theoretical analysis, which discusses the impact caused by random quantization. Finally, a numerical experiment is utilized to show the validity of the novel MVRSE approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到,获得积分10
1秒前
ABBYTHU18发布了新的文献求助10
1秒前
红红酱发布了新的文献求助10
1秒前
1秒前
小竹完成签到,获得积分10
1秒前
感动不二发布了新的文献求助10
2秒前
nancylan应助雨滴音乐采纳,获得10
2秒前
Gino完成签到,获得积分0
2秒前
三水发布了新的文献求助10
3秒前
3秒前
公司账号2发布了新的文献求助10
4秒前
bbbabo完成签到,获得积分10
4秒前
CipherSage应助欧大大采纳,获得10
5秒前
Zhangxinhao发布了新的文献求助10
6秒前
6秒前
bkagyin应助Leeyouyou采纳,获得10
6秒前
青雉完成签到,获得积分10
6秒前
wangxiangqin完成签到,获得积分10
7秒前
小罗萝卜完成签到,获得积分10
7秒前
JamesPei应助阿拉采纳,获得10
7秒前
8秒前
隐形曼青应助carl采纳,获得10
8秒前
wipmzxu发布了新的文献求助10
8秒前
8秒前
8秒前
在水一方应助王荷一采纳,获得10
9秒前
科目三应助lizhaonian采纳,获得10
10秒前
10秒前
小明给小明的求助进行了留言
10秒前
pluto应助Wunier61采纳,获得10
11秒前
279完成签到,获得积分10
11秒前
缥缈襄发布了新的文献求助10
11秒前
pluto应助fcyyc采纳,获得10
11秒前
11秒前
大个应助一一采纳,获得10
11秒前
文静的颖完成签到,获得积分10
11秒前
wangxiangqin发布了新的文献求助10
11秒前
洁净的鹰关注了科研通微信公众号
12秒前
爱学习的椰子完成签到 ,获得积分10
12秒前
邢晓彤完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246