18F-FDG PET-Based Combined Baseline and End-Of-Treatment Radiomics Model Improves the Prognosis Prediction in Diffuse Large B Cell Lymphoma After First-Line Therapy

无线电技术 医学 比例危险模型 国际预后指标 弥漫性大B细胞淋巴瘤 判别式 核医学 内科学 淋巴瘤 无进展生存期 肿瘤科 人工智能 总体生存率 放射科 计算机科学
作者
Yingpu Cui,Yongluo Jiang,Xi Deng,Wen Long,Baocong Liu,Wei Fan,Yinghe Li,Xu Zhang
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (7): 1408-1418 被引量:5
标识
DOI:10.1016/j.acra.2022.10.011
摘要

To develop a combined model incorporating the clinical and PET features for identifying patients with diffuse large B-cell lymphoma (DLBCL) at high risk of progression or relapse after first-line therapy, compared to International Prognostic Index (IPI) and Deauville score (DS) assessment.271 18F-FDG PET images with DLBCL were retrospectively collected and randomly divided into the training (n=190) and test dataset (n=81). All visible lesions were annotated. Baseline, end-of-treatment (EoT), and delta PET radiomics features were extracted. IPI model, the baseline clinical model group (MG), DS model, the combined clinical MG, the PET-based radiomics MG, and the combined MG were constructed to predict 2-year time to progression (2Y-TTP). For each MG, the cross-combination method was performed to generate 1680 candidate models based on three normalization methods, 20 features, 4 feature-selection methods, and 7 classifiers. The model achieving the highest AUC was selected as the best for each MG. Cox regression analysis was further performed.In the test set, the best combined model showed better discriminative power compared to IPI model, the best baseline clinical model, DS model, the best combined clinical model, and the best PET-based radiomics model (AUC 0.898 vs. 0.584, 0.695, 0.756, 0.824, 0.832; p < 0.001, 0.014, 0.018, 0.152, 0.042, respectively). The combined model was superior to other models for progression-free-survival prediction (C-index: 0.853 vs. 0.568, 0.666, 0.753, 0.808, 0.814, respectively).A combined model for identifying patients at high risk of progression or relapse after first-line therapy was constructed, superior to IPI and DS assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
混沌完成签到,获得积分10
刚刚
栀子完成签到,获得积分10
1秒前
RuiyuZhang完成签到,获得积分20
1秒前
陈军应助吉吉国王采纳,获得20
2秒前
LXZ发布了新的文献求助10
3秒前
3秒前
岗吉完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
6秒前
动力小滋完成签到,获得积分10
6秒前
魁梧的鸿煊完成签到,获得积分20
7秒前
霜月十四完成签到,获得积分10
7秒前
7秒前
momo完成签到,获得积分10
7秒前
9秒前
9秒前
11秒前
12秒前
12秒前
wulawu发布了新的文献求助10
12秒前
徐丫丫完成签到,获得积分10
12秒前
霸气紫杉完成签到,获得积分10
13秒前
hrbbdhr发布了新的文献求助30
14秒前
Jasper应助苦哈哈采纳,获得10
15秒前
Fei发布了新的文献求助30
15秒前
薰硝壤应助忧伤的听白采纳,获得10
15秒前
16秒前
yyauthor发布了新的文献求助10
16秒前
16秒前
菜狗发布了新的文献求助10
17秒前
18秒前
18秒前
可爱的函函应助北雁采纳,获得10
18秒前
zhu97完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
美好乐松应助橙子采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870