JFLN: Joint Feature Learning Network for 2D sketch based 3D shape retrieval

计算机科学 模态(人机交互) 素描 人工智能 光学(聚焦) 特征(语言学) 情态动词 冗余(工程) 利用 相关性(法律) 特征学习 模式识别(心理学) 特征提取 机器学习 数据挖掘 法学 高分子化学 化学 哲学 算法 物理 光学 操作系统 语言学 计算机安全 政治学
作者
Yue Zhao,Qi Liang,Ruixin Ma,Weizhi Nie,Yuting Su
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:89: 103668-103668 被引量:9
标识
DOI:10.1016/j.jvcir.2022.103668
摘要

Cross-modal retrieval attracts much research attention due to its wide applications in numerous search systems. Sketch based 3D shape retrieval is a typical challenging cross-modal retrieval task for the huge divergence between sketch modality and 3D shape view modality. Existing approaches project the sketches and shapes into a common space for feature update and data alignment. However, these methods contain several disadvantages: Firstly, the majority approaches ignore the modality-shared information for divergence compensation in descriptor generation process. Secondly, traditional fusion method of multi-view features introduces much redundancy, which decreases the discrimination of shape descriptors. Finally, most approaches only focus on the cross-modal alignment, which omits the modality-specific data relevance. To address these limitations, we propose a Joint Feature Learning Network (JFLN). Firstly, we design a novel modality-shared feature extraction network to exploit both modality-specific characteristics and modality-shared information for descriptor generation. Subsequently, we introduce a hierarchical view attention module to gradually focus on the effective information for multiview feature updating and aggregation. Finally, we propose a novel cross-modal feature learning network, which can simultaneously contribute to modality-specific data distribution and cross-modal data alignment. We conduct exhaustive experiments on three public databases. The experimental results validate the superiority of the proposed method. Full Codes are available at https://github.com/dlmuyy/JFLN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助fxxk采纳,获得20
刚刚
sxb10101应助积极诗霜采纳,获得50
1秒前
fucccboi发布了新的文献求助10
1秒前
HeySue完成签到,获得积分10
1秒前
1秒前
1秒前
白桃枝完成签到,获得积分10
2秒前
2秒前
2秒前
张梦迪完成签到,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
3秒前
彭于晏应助yjj采纳,获得30
4秒前
4秒前
akun发布了新的文献求助10
4秒前
科研人发布了新的文献求助10
5秒前
科目三应助fucccboi采纳,获得10
5秒前
5秒前
结实的栾完成签到,获得积分10
5秒前
汉堡包应助Affenyi采纳,获得10
5秒前
浮游应助铁头哇采纳,获得10
5秒前
香蕉觅云应助hh采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
我们仨完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
甲木发布了新的文献求助10
6秒前
完美世界应助朴实雨柏采纳,获得10
6秒前
陌弋完成签到,获得积分10
7秒前
lucky发布了新的文献求助10
7秒前
选择性哑巴完成签到,获得积分10
7秒前
炖地瓜发布了新的文献求助10
8秒前
8秒前
8秒前
两仪完成签到,获得积分10
8秒前
8秒前
丘比特应助fmmuxiaoqiang采纳,获得10
8秒前
8秒前
糖糖完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721