JFLN: Joint Feature Learning Network for 2D sketch based 3D shape retrieval

计算机科学 模态(人机交互) 素描 人工智能 光学(聚焦) 特征(语言学) 情态动词 冗余(工程) 利用 相关性(法律) 特征学习 模式识别(心理学) 特征提取 机器学习 数据挖掘 法学 高分子化学 化学 哲学 算法 物理 光学 操作系统 语言学 计算机安全 政治学
作者
Yue Zhao,Qi Liang,Ruixin Ma,Weizhi Nie,Yuting Su
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:89: 103668-103668 被引量:9
标识
DOI:10.1016/j.jvcir.2022.103668
摘要

Cross-modal retrieval attracts much research attention due to its wide applications in numerous search systems. Sketch based 3D shape retrieval is a typical challenging cross-modal retrieval task for the huge divergence between sketch modality and 3D shape view modality. Existing approaches project the sketches and shapes into a common space for feature update and data alignment. However, these methods contain several disadvantages: Firstly, the majority approaches ignore the modality-shared information for divergence compensation in descriptor generation process. Secondly, traditional fusion method of multi-view features introduces much redundancy, which decreases the discrimination of shape descriptors. Finally, most approaches only focus on the cross-modal alignment, which omits the modality-specific data relevance. To address these limitations, we propose a Joint Feature Learning Network (JFLN). Firstly, we design a novel modality-shared feature extraction network to exploit both modality-specific characteristics and modality-shared information for descriptor generation. Subsequently, we introduce a hierarchical view attention module to gradually focus on the effective information for multiview feature updating and aggregation. Finally, we propose a novel cross-modal feature learning network, which can simultaneously contribute to modality-specific data distribution and cross-modal data alignment. We conduct exhaustive experiments on three public databases. The experimental results validate the superiority of the proposed method. Full Codes are available at https://github.com/dlmuyy/JFLN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助周周周采纳,获得10
刚刚
2秒前
木木杨完成签到,获得积分10
3秒前
潇洒的冰淇淋完成签到,获得积分10
3秒前
4秒前
zzzzzzzzzzzz发布了新的文献求助10
4秒前
4秒前
Akim应助HUYAOWEI采纳,获得10
4秒前
无极微光应助HUYAOWEI采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
深情的新儿完成签到,获得积分10
7秒前
虚幻的芷珊完成签到,获得积分10
8秒前
clio完成签到,获得积分10
8秒前
ri_290发布了新的文献求助10
9秒前
9秒前
所所应助耍酷问兰采纳,获得10
9秒前
scuter发布了新的文献求助10
9秒前
10秒前
渺渺发布了新的文献求助10
11秒前
jwjzsznb发布了新的文献求助50
11秒前
11秒前
阳光的衫发布了新的文献求助10
12秒前
爆爆发布了新的文献求助10
12秒前
stop here完成签到,获得积分10
12秒前
bkagyin应助scuter采纳,获得10
14秒前
思源应助Genius采纳,获得10
14秒前
啵啵龙完成签到,获得积分10
15秒前
16秒前
酷波er应助HUYAOWEI采纳,获得10
17秒前
乐乐应助HUYAOWEI采纳,获得10
17秒前
大个应助HUYAOWEI采纳,获得10
17秒前
科研通AI6应助HUYAOWEI采纳,获得10
17秒前
小二郎应助HUYAOWEI采纳,获得10
17秒前
深情安青应助HUYAOWEI采纳,获得10
17秒前
科研通AI2S应助HUYAOWEI采纳,获得10
17秒前
SciGPT应助HUYAOWEI采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497