JFLN: Joint Feature Learning Network for 2D sketch based 3D shape retrieval

计算机科学 模态(人机交互) 素描 人工智能 光学(聚焦) 特征(语言学) 情态动词 冗余(工程) 利用 相关性(法律) 特征学习 模式识别(心理学) 特征提取 机器学习 数据挖掘 法学 高分子化学 化学 哲学 算法 物理 光学 操作系统 语言学 计算机安全 政治学
作者
Yue Zhao,Qi Liang,Ruixin Ma,Weizhi Nie,Yuting Su
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:89: 103668-103668 被引量:9
标识
DOI:10.1016/j.jvcir.2022.103668
摘要

Cross-modal retrieval attracts much research attention due to its wide applications in numerous search systems. Sketch based 3D shape retrieval is a typical challenging cross-modal retrieval task for the huge divergence between sketch modality and 3D shape view modality. Existing approaches project the sketches and shapes into a common space for feature update and data alignment. However, these methods contain several disadvantages: Firstly, the majority approaches ignore the modality-shared information for divergence compensation in descriptor generation process. Secondly, traditional fusion method of multi-view features introduces much redundancy, which decreases the discrimination of shape descriptors. Finally, most approaches only focus on the cross-modal alignment, which omits the modality-specific data relevance. To address these limitations, we propose a Joint Feature Learning Network (JFLN). Firstly, we design a novel modality-shared feature extraction network to exploit both modality-specific characteristics and modality-shared information for descriptor generation. Subsequently, we introduce a hierarchical view attention module to gradually focus on the effective information for multiview feature updating and aggregation. Finally, we propose a novel cross-modal feature learning network, which can simultaneously contribute to modality-specific data distribution and cross-modal data alignment. We conduct exhaustive experiments on three public databases. The experimental results validate the superiority of the proposed method. Full Codes are available at https://github.com/dlmuyy/JFLN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼完成签到,获得积分10
2秒前
小虎应助Fengkai_CHEN采纳,获得30
2秒前
4秒前
minuxSCI完成签到,获得积分10
4秒前
6秒前
坚强铸海完成签到,获得积分10
7秒前
牛牛眉目发布了新的文献求助10
7秒前
7秒前
8秒前
干姜发布了新的文献求助10
9秒前
Pp发布了新的文献求助10
10秒前
666应助科研鸟采纳,获得10
10秒前
蓝天白云发布了新的文献求助10
10秒前
瓦解99发布了新的文献求助10
13秒前
yx_cheng应助zzz采纳,获得30
13秒前
Coraline应助jt采纳,获得10
14秒前
15秒前
20秒前
csy发布了新的文献求助10
22秒前
瓦解99完成签到,获得积分10
23秒前
23秒前
24秒前
张渔歌完成签到,获得积分10
24秒前
24秒前
25秒前
27秒前
asdf应助明天见采纳,获得10
27秒前
愉快天亦完成签到,获得积分10
28秒前
30秒前
30秒前
31秒前
Jasper应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
ED应助科研通管家采纳,获得10
31秒前
彭于彦祖应助科研通管家采纳,获得30
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388