Investigation on flow resistance reduction and EOR mechanisms by activated silica nanofluids: Merging microfluidic experimental and CFD modeling approaches

纳米流体 计算流体力学 材料科学 提高采收率 表面张力 可视化 微流控 流量(数学) 粘度 润湿 石油工程 工艺工程 机械 纳米技术 机械工程 复合材料 纳米颗粒 热力学 工程类 物理
作者
Qian Da,Chuanjin Yao,Xue Zhang,Lei Li,Guanglun Lei
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:368: 120646-120646 被引量:5
标识
DOI:10.1016/j.molliq.2022.120646
摘要

Activated silica nanofluids (ASN) flooding has been proven to be an effective method to enhance oil recovery. However, due to the variety of nanoparticles and surfactants used for ASN synthesis, the main mechanisms of flow resistance reduction and oil recovery enhancement by ASN are still unclear, and most studies are based on physical experiments, which are too cumbersome and inefficient. In this study, the ASN flooding experiment and CFD modeling are combined based on microscopic visualization experiments. Firstly, three kinds of ASN with different hydrodynamic diameters were synthesized by BS-12 and nano-silica sol, and the basic properties were tested to obtain the modeling parameters. Surface flow experiments were also carried out. Then, a microscopic model based on the real pore-throat size was developed, and combined with image processing technology, the quantitative study and EOR mechanism analysis of the ASN flooding process was carried out. Finally, CFD modeling was carried out based on microscopic visualization experiments to predict the recovery improvement after improving ASN performance. The results show that at the optimal concentration of 1%, the ASN with a smaller hydrodynamic diameter performs better in wettability alteration and reducing interfacial tension and viscosity ratio. ASN can significantly reduce the flow resistance coefficient by 30.36% to 95.43%. The reduction of micro-resistances is the important EOR mechanism of ASN. The results of the microscopic visualization experiment and CFD simulation are compared, and errors ranged from 3.9% to 5.22% for recovery factors in various injection scenarios. The prediction results by CFD simulation show that the viscosity reduction ability has the most significant effect on the recovery factor. The best performance parameters of ASN under the highest recovery factor are also predicted. Simulation results guide the selection of surfactants and nanoparticles in the subsequent ASN synthesis process, which has the advantages of high efficiency and low cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助aaaaaab采纳,获得10
1秒前
科研通AI2S应助鸢尾蓝采纳,获得10
1秒前
1秒前
lixiao发布了新的文献求助10
1秒前
2秒前
田様应助王博士采纳,获得10
2秒前
Lucas应助sea2023采纳,获得10
2秒前
酷波er应助明理宝莹采纳,获得10
2秒前
谨慎幻丝应助tp040900采纳,获得20
3秒前
zzz完成签到,获得积分10
3秒前
忆韵发布了新的文献求助10
4秒前
fan发布了新的文献求助10
4秒前
我是老大应助zzzxh采纳,获得10
5秒前
ZZZ完成签到 ,获得积分10
5秒前
5秒前
5秒前
CipherSage应助SKZ采纳,获得10
5秒前
6秒前
ffff发布了新的文献求助10
6秒前
英俊的铭应助辛勤的志泽采纳,获得30
7秒前
7秒前
Sekiro完成签到,获得积分10
7秒前
李何冯完成签到,获得积分20
8秒前
shibomeng完成签到,获得积分10
8秒前
xicifish完成签到,获得积分10
9秒前
370完成签到,获得积分10
9秒前
ZZW完成签到,获得积分10
10秒前
fan完成签到,获得积分20
10秒前
勤恳安南完成签到,获得积分10
11秒前
zcc456完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
K1481691发布了新的文献求助10
13秒前
13秒前
Akim应助stargazer采纳,获得10
14秒前
完美世界应助斯文可仁采纳,获得10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251