Trends in Stage I Lung Cancer

医学 肺癌 阶段(地层学) 癌症 内科学 组织学 肿瘤科 生物 古生物学
作者
Aashray Singareddy,Mary Ellen Flanagan,Pamela Samson,Saiama N. Waqar,Siddhartha Devarakonda,Jeffrey P. Ward,Brett H. Herzog,Anjali Rohatgi,Clifford G. Robinson,Feng Gao,Ramaswamy Govindan,Varun Puri,Daniel Morgensztern
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:24 (2): 114-119 被引量:12
标识
DOI:10.1016/j.cllc.2022.11.005
摘要

Introduction The American Cancer Society has recently reported an increase in the percentage of patients with localized lung cancer from 2004 to 2018, coinciding with the initial lung cancer screening guidelines issued in 2013. We conducted a National Cancer Database (NCDB) study to further evaluate the trends in stage I according to patient and tumor characteristics. Methods We selected patients with lung cancer from the NCDB Public Benchmark Report diagnosed between 2010 and 2017. Patients with stages I to IV according to the AJCC seventh edition were evaluated according to the year of diagnosis, histology, age, sex, race, and insurance. Results Among the 1,447,470 patients identified in the database, 56,382 (3.9%) were excluded due to stage 0 or unknown, or incorrect histology, leaving 1,391,088 patients eligible. The percentage of patients with stage I increased from 23.5% in 2010 to 29.1% in 2017 for all lung cancers, from 25.9% to 31.8% in non−small-cell lung cancer (NSCLC), and from 5.0% to 5.4% in small-cell lung cancer (SCLC). Patients younger than 70 years, males and blacks had lower percentages of stage I compared to older patients, females, and nonblacks respectively. Patients with no insurance had the lowest percentage of stage I. Conclusions There has been a significant increase in the percentage of stage I lung cancer at diagnosis from 2010 to 2017, which occurred mostly in NSCLC. Although the staging shift was observed in all subsets of patients, there were noticeable imbalances according to demographic factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity举报一只大肥猫求助涉嫌违规
1秒前
大旭发布了新的文献求助10
2秒前
3秒前
4秒前
Jasper应助bofu采纳,获得10
6秒前
7秒前
Daria完成签到,获得积分10
7秒前
汎影发布了新的文献求助10
8秒前
杳鸢应助Noah采纳,获得10
9秒前
干雅柏完成签到,获得积分10
9秒前
所所应助ured采纳,获得10
10秒前
科研通AI2S应助勤恳的水桃采纳,获得10
11秒前
11秒前
汉堡包应助张莹采纳,获得10
11秒前
鹿港猫妖发布了新的文献求助30
11秒前
自信夜春发布了新的文献求助10
12秒前
浮生发布了新的文献求助10
12秒前
15秒前
15秒前
尹雪儿发布了新的文献求助10
16秒前
科目三应助bofu采纳,获得10
16秒前
RSC发布了新的文献求助10
17秒前
自信夜春完成签到,获得积分10
18秒前
传奇3应助浮生采纳,获得10
20秒前
ll发布了新的文献求助10
20秒前
21秒前
雨晴轻完成签到,获得积分10
21秒前
23秒前
田様应助科研r采纳,获得10
23秒前
bkagyin应助bofu采纳,获得10
23秒前
24秒前
余姓懒完成签到,获得积分10
24秒前
26秒前
勇哥发布了新的文献求助10
28秒前
29秒前
31秒前
wali完成签到 ,获得积分0
31秒前
天下无敌丑娃娃完成签到,获得积分10
31秒前
科研通AI2S应助尹雪儿采纳,获得30
32秒前
SciGPT应助bofu采纳,获得20
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323