离子键合
电子迁移率
凝聚态物理
电子
材料科学
化学物理
化学
光电子学
离子
物理
有机化学
量子力学
作者
Hong Yan,Shengwei Zeng,Km Rubi,Ganesh Ji Omar,Zhaoting Zhang,M. Goiran,Walter Escoffier,Ariando Ariando
标识
DOI:10.1002/admi.202201633
摘要
Due to the coexistence of many emergent phenomena, including 2D superconductivity and a large Rashba spin-orbit coupling, 5d transition metal oxides based two-dimensional electron systems (2DESs) have been prospected as one of the potential intrants for modern electronics. However, despite the lighter electron mass, the mobility of carriers, a key requisite for high-performance devices, in 5d-oxides devices remains far behind their 3d-oxides analogs. The carriers mobility in these oxides is significantly hampered by the inevitable presence of defects generated during the growth process. Here, we report very high mobility ($\sim$ 22650 cm$^2$V$^{-1}$s$^{-1}$) of 5d-2DES confined at the LaAlO$_3$/KTaO$_3$ interface. The high mobility, which is beyond the values observed in LaAlO$_3$/SrTiO$_3$ and $\gamma$-Al$_2$O$_3$/SrTiO$_3$ systems in the same carrier-density range, is achieved using the ionic-liquid gating at room temperature. We postulate that the ionic-liquid gating affects the oxygen vacancies and efficiently reduces any disorder at the interface. Investigating density and mobility in a broad range of back-gate voltage, we reveal that the mobility follows the power-law $\mu \propto n^{1.2}$, indicating the very high quality of ionic-liquid-gated LaAlO$_3$/KTaO$_3$ devices, consistent with our postulate. Further, the analysis of the quantum oscillations measured in high magnetic fields confirms that the high-mobility electrons occupy the electronic sub-bands emerging from the Ta:5d orbitals of KTaO$_3$.
科研通智能强力驱动
Strongly Powered by AbleSci AI