Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network

计算机科学 分割 人工智能 模式识别(心理学) 深度学习 比例(比率) 计算机视觉 量子力学 物理
作者
Enting Gao,Hui Jiang,Zhibang Zhou,Changxing Yang,Muyang Chen,Weifang Zhu,Fei Shi,Xinjian Chen,Jian Zheng,Yun Bian,Dehui Xiang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106228-106228 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.106228
摘要

The morphology of tissues in pathological images has been used routinely by pathologists to assess the degree of malignancy of pancreatic ductal adenocarcinoma (PDAC). Automatic and accurate segmentation of tumor cells and their surrounding tissues is often a crucial step to obtain reliable morphological statistics. Nonetheless, it is still a challenge due to the great variation of appearance and morphology. In this paper, a selected multi-scale attention network (SMANet) is proposed to segment tumor cells, blood vessels, nerves, islets and ducts in pancreatic pathological images. The selected multi-scale attention module is proposed to enhance effective information, supplement useful information and suppress redundant information at different scales from the encoder and decoder. It includes selection unit (SU) module and multi-scale attention (MA) module. The selection unit module can effectively filter features. The multi-scale attention module enhances effective information through spatial attention and channel attention, and combines different level features to supplement useful information. This helps learn the information of different receptive fields to improve the segmentation of tumor cells, blood vessels and nerves. An original-feature fusion unit is also proposed to supplement the original image information to reduce the under-segmentation of small tissues such as islets and ducts. The proposed method outperforms state-of-the-arts deep learning algorithms on our PDAC pathological images and achieves competitive results on the GlaS challenge dataset. The mDice and mIoU have reached 0.769 and 0.665 in our PDAC dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pingyy完成签到 ,获得积分10
刚刚
爱听歌新烟完成签到,获得积分10
刚刚
ruilong发布了新的文献求助10
刚刚
luna关注了科研通微信公众号
1秒前
VDC应助卜卜脆采纳,获得30
1秒前
秋霜应助小石头采纳,获得10
2秒前
guoguo完成签到 ,获得积分10
2秒前
luo完成签到,获得积分10
2秒前
李爱国应助Gilana采纳,获得10
2秒前
2秒前
3秒前
4秒前
淡然寒蕾完成签到,获得积分10
4秒前
5秒前
5秒前
今后应助一念之间采纳,获得10
5秒前
研友_LBaRl8完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
科研通AI5应助scutwqq采纳,获得10
6秒前
大力猫崽完成签到 ,获得积分10
6秒前
6秒前
传奇3应助郇郇采纳,获得10
7秒前
桐桐应助猫猫小队长采纳,获得10
7秒前
7秒前
7秒前
8秒前
9秒前
VDC应助廿澍采纳,获得30
10秒前
10秒前
玉轮完成签到,获得积分10
10秒前
10秒前
霉凡脑发布了新的文献求助10
11秒前
11秒前
雪白红紫发布了新的文献求助10
11秒前
AVA发布了新的文献求助10
11秒前
LSX完成签到,获得积分10
12秒前
iuuuuu发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212