An online approach for robust parameter design with incremental Gaussian process

过程(计算) 高斯过程 计算机科学 质量(理念) 噪音(视频) 在线模型 选择(遗传算法) 实验设计 数学优化 数学 高斯分布 机器学习 统计 人工智能 物理 认识论 操作系统 图像(数学) 哲学 量子力学
作者
Xiaojian Zhou,Yunlong Gao,Ting Jiang,Zebiao Feng
出处
期刊:Quality Engineering [Taylor & Francis]
卷期号:35 (3): 430-443 被引量:2
标识
DOI:10.1080/08982112.2022.2147844
摘要

Robust parameter design (RPD), an important method for quality improvement, can effectively mitigate the negative impact of fluctuations on product quality. Traditional RPD adopts offline design, that is, the optimal level of parameter combination is fixed by one-time modeling throughout the production process. This strategy is obviously unreasonable. Online RPD breaks through the limitation of traditional offline design, which can update the optimal setting by utilizing the new sample when the current optimal setting of controllable factors is not suitable. However, there are still some problems in the current version of online RPD, such as poor data fitting ability of response surface model and low efficiency of parameter design. In this paper, a new online RPD method based on Gaussian process (GP) is proposed. The GP model is used to construct the response surface, which has the capacity of dealing with high-dimensional nonlinear data. But traditional GP method adopts batch learning, it cannot update the model online with new samples. So this paper proposes an incremental Gaussian process model (IGP), which can update the response surface in real-time. In the proposed IGP based online robust parameter design method (IGP-RPD), an effective optimization strategy is used to find the optimal setting of controllable factors, and a reasonable selection criterion is used to determine the noise factor setting for the next stage. The optimal setting of the controllable factor in the previous stage and the currently observed noise factor are used as input, and the corresponding quality characteristic is taken as the output. The input and output form a new sample to update the response surface model. In this way, the RPD process can be redone continuously until the desirable optimal setting of the controllable factor is found. Three cases are used to verify the IGP-RPD method and compare it with the existing methods. The experiments manifest that the IGP-RPD method has better performance in both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
1秒前
等待的晓亦完成签到 ,获得积分10
1秒前
坚强的鸡翅完成签到,获得积分10
2秒前
浮游应助通通真行采纳,获得10
3秒前
3秒前
一水合羟基磷酸钙完成签到,获得积分10
3秒前
Akim应助geoman采纳,获得10
3秒前
3秒前
疯子不风完成签到,获得积分10
4秒前
共享精神应助从容以山采纳,获得10
5秒前
曹颖完成签到,获得积分10
6秒前
xiao刘发布了新的文献求助10
7秒前
Simpson完成签到 ,获得积分0
7秒前
单薄黑米发布了新的文献求助10
8秒前
8秒前
shinble发布了新的文献求助10
8秒前
geoman完成签到,获得积分10
10秒前
11秒前
务实的惜霜完成签到,获得积分10
13秒前
浮游应助juphen2采纳,获得10
13秒前
最初的远方完成签到,获得积分10
14秒前
独角兽发布了新的文献求助50
14秒前
tiger完成签到,获得积分10
15秒前
15秒前
15秒前
8R60d8应助ambitiouslu采纳,获得10
15秒前
从容以山完成签到,获得积分10
17秒前
18秒前
隐形曼青应助小程采纳,获得10
18秒前
18秒前
19秒前
19秒前
科研通AI6应助tt采纳,获得10
20秒前
GHB发布了新的文献求助10
20秒前
知行合一完成签到,获得积分20
21秒前
董烁烨发布了新的文献求助10
22秒前
从容以山发布了新的文献求助10
23秒前
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263