An online approach for robust parameter design with incremental Gaussian process

过程(计算) 高斯过程 计算机科学 质量(理念) 噪音(视频) 在线模型 选择(遗传算法) 实验设计 数学优化 数学 高斯分布 机器学习 统计 人工智能 物理 认识论 操作系统 图像(数学) 哲学 量子力学
作者
Xiaojian Zhou,Yunlong Gao,Ting Jiang,Zebiao Feng
出处
期刊:Quality Engineering [Informa]
卷期号:35 (3): 430-443 被引量:2
标识
DOI:10.1080/08982112.2022.2147844
摘要

Robust parameter design (RPD), an important method for quality improvement, can effectively mitigate the negative impact of fluctuations on product quality. Traditional RPD adopts offline design, that is, the optimal level of parameter combination is fixed by one-time modeling throughout the production process. This strategy is obviously unreasonable. Online RPD breaks through the limitation of traditional offline design, which can update the optimal setting by utilizing the new sample when the current optimal setting of controllable factors is not suitable. However, there are still some problems in the current version of online RPD, such as poor data fitting ability of response surface model and low efficiency of parameter design. In this paper, a new online RPD method based on Gaussian process (GP) is proposed. The GP model is used to construct the response surface, which has the capacity of dealing with high-dimensional nonlinear data. But traditional GP method adopts batch learning, it cannot update the model online with new samples. So this paper proposes an incremental Gaussian process model (IGP), which can update the response surface in real-time. In the proposed IGP based online robust parameter design method (IGP-RPD), an effective optimization strategy is used to find the optimal setting of controllable factors, and a reasonable selection criterion is used to determine the noise factor setting for the next stage. The optimal setting of the controllable factor in the previous stage and the currently observed noise factor are used as input, and the corresponding quality characteristic is taken as the output. The input and output form a new sample to update the response surface model. In this way, the RPD process can be redone continuously until the desirable optimal setting of the controllable factor is found. Three cases are used to verify the IGP-RPD method and compare it with the existing methods. The experiments manifest that the IGP-RPD method has better performance in both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
阿文在读研完成签到 ,获得积分10
1秒前
1秒前
daisyyyyy完成签到,获得积分10
1秒前
2秒前
ssssYyyy完成签到,获得积分10
2秒前
2秒前
3秒前
lai发布了新的文献求助10
3秒前
4秒前
4秒前
李健应助科研采纳,获得10
4秒前
NexusExplorer应助kais采纳,获得10
4秒前
简单如容发布了新的文献求助10
4秒前
轻松真完成签到,获得积分10
5秒前
MAD666发布了新的文献求助10
5秒前
斯文败类应助弄井采纳,获得10
5秒前
阿文在读研关注了科研通微信公众号
5秒前
森宝完成签到,获得积分10
5秒前
竭缘完成签到,获得积分10
7秒前
7秒前
好困应助shionn采纳,获得20
7秒前
ssssYyyy发布了新的文献求助10
7秒前
十三发布了新的文献求助10
8秒前
9秒前
小李同学发布了新的文献求助10
9秒前
JQ发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
Jasper应助妞妞采纳,获得10
13秒前
梦幻时空完成签到,获得积分10
13秒前
寻道图强应助UP采纳,获得50
13秒前
xzx完成签到,获得积分10
13秒前
SZK完成签到,获得积分10
14秒前
斯文思柔关注了科研通微信公众号
14秒前
开开发布了新的文献求助30
14秒前
aaaacc完成签到,获得积分20
15秒前
Ilyas0525完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655