BloodNet: An attention-based deep network for accurate, efficient, and costless bloodstain time since deposition inference

推论 人工智能 计算机科学 沉积(地质) 生物 古生物学 沉积物
作者
Huiyu Li,Chen Shen,Gongji Wang,Qinru Sun,Kai Yu,Zefeng Li,Xinggong Liang,Run Chen,W. Hao,Fan Wang,Zhenyuan Wang,Chunfeng Lian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1)
标识
DOI:10.1093/bib/bbac557
摘要

The time since deposition (TSD) of a bloodstain, i.e., the time of a bloodstain formation is an essential piece of biological evidence in crime scene investigation. The practical usage of some existing microscopic methods (e.g., spectroscopy or RNA analysis technology) is limited, as their performance strongly relies on high-end instrumentation and/or rigorous laboratory conditions. This paper presents a practically applicable deep learning-based method (i.e., BloodNet) for efficient, accurate, and costless TSD inference from a macroscopic view, i.e., by using easily accessible bloodstain photos. To this end, we established a benchmark database containing around 50,000 photos of bloodstains with varying TSDs. Capitalizing on such a large-scale database, BloodNet adopted attention mechanisms to learn from relatively high-resolution input images the localized fine-grained feature representations that were highly discriminative between different TSD periods. Also, the visual analysis of the learned deep networks based on the Smooth Grad-CAM tool demonstrated that our BloodNet can stably capture the unique local patterns of bloodstains with specific TSDs, suggesting the efficacy of the utilized attention mechanism in learning fine-grained representations for TSD inference. As a paired study for BloodNet, we further conducted a microscopic analysis using Raman spectroscopic data and a machine learning method based on Bayesian optimization. Although the experimental results show that such a new microscopic-level approach outperformed the state-of-the-art by a large margin, its inference accuracy is significantly lower than BloodNet, which further justifies the efficacy of deep learning techniques in the challenging task of bloodstain TSD inference. Our code is publically accessible via https://github.com/shenxiaochenn/BloodNet. Our datasets and pre-trained models can be freely accessed via https://figshare.com/articles/dataset/21291825.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
析进关注了科研通微信公众号
刚刚
Emper发布了新的文献求助10
1秒前
调皮的万怨完成签到,获得积分10
1秒前
海棠花未眠完成签到,获得积分10
1秒前
一品真意完成签到,获得积分10
1秒前
王运静完成签到,获得积分10
1秒前
1秒前
2秒前
Survivor应助迅速海云采纳,获得10
2秒前
Lucas应助天天小女孩采纳,获得10
2秒前
程smile笑发布了新的文献求助10
2秒前
aniver完成签到 ,获得积分10
3秒前
QIANGYI发布了新的文献求助10
3秒前
3秒前
Zsx完成签到,获得积分10
3秒前
生动的踏歌完成签到,获得积分10
3秒前
英勇的绿海完成签到,获得积分10
4秒前
Lawyer完成签到 ,获得积分10
4秒前
科研r完成签到,获得积分10
5秒前
整齐冬瓜发布了新的文献求助10
5秒前
Hedy完成签到,获得积分10
6秒前
typpppp完成签到,获得积分10
6秒前
小小王完成签到,获得积分10
6秒前
6秒前
YeeLeeLee完成签到,获得积分10
6秒前
KIORking完成签到,获得积分10
6秒前
王方明发布了新的文献求助10
6秒前
咿呀咿呀哟完成签到,获得积分0
7秒前
二世小卒完成签到 ,获得积分10
7秒前
怡然问晴发布了新的文献求助10
8秒前
楠楠完成签到,获得积分10
8秒前
Maestro_S发布了新的文献求助10
8秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
8秒前
小俞发布了新的文献求助10
9秒前
Blue完成签到,获得积分10
9秒前
顾矜应助何pulapula采纳,获得10
9秒前
魔幻的绿海完成签到 ,获得积分10
10秒前
飞翔的荷兰人完成签到,获得积分10
10秒前
Owen应助如风随水采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874