BloodNet: An attention-based deep network for accurate, efficient, and costless bloodstain time since deposition inference

推论 人工智能 计算机科学 沉积(地质) 生物 古生物学 沉积物
作者
Huiyu Li,Chen Shen,Gongji Wang,Qinru Sun,Kai Yu,Zefeng Li,Xinggong Liang,Run Chen,W. Hao,Fan Wang,Zhenyuan Wang,Chunfeng Lian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1)
标识
DOI:10.1093/bib/bbac557
摘要

The time since deposition (TSD) of a bloodstain, i.e., the time of a bloodstain formation is an essential piece of biological evidence in crime scene investigation. The practical usage of some existing microscopic methods (e.g., spectroscopy or RNA analysis technology) is limited, as their performance strongly relies on high-end instrumentation and/or rigorous laboratory conditions. This paper presents a practically applicable deep learning-based method (i.e., BloodNet) for efficient, accurate, and costless TSD inference from a macroscopic view, i.e., by using easily accessible bloodstain photos. To this end, we established a benchmark database containing around 50,000 photos of bloodstains with varying TSDs. Capitalizing on such a large-scale database, BloodNet adopted attention mechanisms to learn from relatively high-resolution input images the localized fine-grained feature representations that were highly discriminative between different TSD periods. Also, the visual analysis of the learned deep networks based on the Smooth Grad-CAM tool demonstrated that our BloodNet can stably capture the unique local patterns of bloodstains with specific TSDs, suggesting the efficacy of the utilized attention mechanism in learning fine-grained representations for TSD inference. As a paired study for BloodNet, we further conducted a microscopic analysis using Raman spectroscopic data and a machine learning method based on Bayesian optimization. Although the experimental results show that such a new microscopic-level approach outperformed the state-of-the-art by a large margin, its inference accuracy is significantly lower than BloodNet, which further justifies the efficacy of deep learning techniques in the challenging task of bloodstain TSD inference. Our code is publically accessible via https://github.com/shenxiaochenn/BloodNet. Our datasets and pre-trained models can be freely accessed via https://figshare.com/articles/dataset/21291825.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小七完成签到 ,获得积分20
刚刚
刚刚
帅气西牛完成签到,获得积分10
3秒前
4秒前
传奇3应助虚幻的青槐采纳,获得10
5秒前
6秒前
科研通AI5应助超级铃铛采纳,获得10
7秒前
111发布了新的文献求助10
9秒前
橙子慢慢来完成签到,获得积分10
9秒前
10秒前
完美世界应助xu采纳,获得10
12秒前
露露发布了新的文献求助10
12秒前
14秒前
大个应助风中亦玉采纳,获得10
14秒前
禾薇完成签到,获得积分10
16秒前
huahuahua发布了新的文献求助30
17秒前
17秒前
伊丽莎白完成签到,获得积分10
18秒前
研友_VZG7GZ应助李同学采纳,获得10
19秒前
wpie99发布了新的文献求助30
24秒前
wangmou完成签到,获得积分10
24秒前
科研通AI5应助江谷林采纳,获得10
28秒前
28秒前
Hello应助禾薇采纳,获得10
29秒前
科研通AI5应助踏实的芸遥采纳,获得10
30秒前
科研通AI5应助蒹葭采纳,获得10
31秒前
李同学发布了新的文献求助10
32秒前
32秒前
杭永程完成签到 ,获得积分10
35秒前
35秒前
博弈春秋完成签到,获得积分10
38秒前
大林发布了新的文献求助10
38秒前
39秒前
41秒前
Crystal完成签到 ,获得积分10
41秒前
海阔天空完成签到,获得积分0
41秒前
江谷林完成签到,获得积分10
43秒前
43秒前
43秒前
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423