Effects of Stone-Wales and applied electric fields on the structure and electrical properties of silicene nanoribbons by SCC-DFTB calculations

硅烯 材料科学 电场 之字形的 凝聚态物理 石墨烯纳米带 带隙 半导体 电负性 晶体缺陷 电荷(物理) 粘结长度 紧密结合 电子结构 纳米技术 石墨烯 晶体结构 光电子学 结晶学 化学 数学 几何学 物理 量子力学
作者
Han Yan,Lijun Wu,Zhiqing Wang,Shuang Wang,Ziyue Qian
出处
期刊:Materials today communications [Elsevier]
卷期号:34: 105233-105233 被引量:7
标识
DOI:10.1016/j.mtcomm.2022.105233
摘要

Stone-Wales (SW) defects are widespread in graphene-like materials, which can affect electrical properties of nanostructures. In this paper, the effects of SW defects and applied vertical electric fields of different strengths on the geometric structure and electrical properties of zigzag silicene nanoribbons with different period widths (widths = 2, 3, 4) were studied by using a self-consistent charge density functional tight-binding (SCC-DFTB) method. The presence of SW defects leads to the reconstruction of silicon atoms, the enhancement of the interaction between atoms and the change of bond lengths and bond angles at the location of defects, and the influence of SW-II type defects on the geometric structure of nanoribbons is greater than that of SW-I type defects. The changing trend of the binding energy of perfect structure nanoribbon is related to its period width, regardless of types and the number of defects, while the size of the energy gap changes with the number and position of defects, and the transition between semi-metallic and semiconductor properties occurs. Meanwhile, at the same defect concentration, the effect of SW-I defects on the band structure is more obvious than that of SW-II defects. The electric field breaks the mirror symmetry at the SW defect, and the electronegativity of some atoms changes with the increase of the electric field strength. The defect types do not affect the charge transfer rule of nanoribbons, however, change the amount of charge transfer of the nanoribbons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助C2采纳,获得10
1秒前
xlj发布了新的文献求助10
1秒前
1秒前
迷路白桃完成签到,获得积分10
2秒前
kento发布了新的文献求助30
2秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
2秒前
小豆包科研冲刺者完成签到,获得积分10
2秒前
黄饱饱完成签到,获得积分10
3秒前
3秒前
传奇3应助CO2采纳,获得10
4秒前
5秒前
称心乐枫完成签到,获得积分10
6秒前
6秒前
22发布了新的文献求助10
6秒前
berry发布了新的文献求助10
6秒前
kingmin应助毛慢慢采纳,获得10
7秒前
完美世界应助顺利鱼采纳,获得10
8秒前
搜集达人应助招财不肥采纳,获得10
9秒前
sweetbearm应助李秋静采纳,获得10
9秒前
Michael_li完成签到,获得积分10
9秒前
whs完成签到,获得积分10
11秒前
科研通AI5应助xlj采纳,获得10
12秒前
再干一杯发布了新的文献求助10
12秒前
13秒前
满意的天完成签到 ,获得积分10
13秒前
luoshiwen完成签到,获得积分10
13秒前
落寞的觅柔完成签到,获得积分10
15秒前
16秒前
LUNWENREQUEST发布了新的文献求助10
16秒前
17秒前
18秒前
123cxj完成签到,获得积分10
21秒前
CO2发布了新的文献求助10
21秒前
summer发布了新的文献求助10
21秒前
22秒前
Xx.发布了新的文献求助10
22秒前
大大关注了科研通微信公众号
22秒前
稚祎完成签到 ,获得积分10
22秒前
22秒前
CodeCraft应助东东采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808