Effects of Stone-Wales and applied electric fields on the structure and electrical properties of silicene nanoribbons by SCC-DFTB calculations

硅烯 材料科学 电场 之字形的 凝聚态物理 石墨烯纳米带 带隙 半导体 电负性 晶体缺陷 电荷(物理) 粘结长度 紧密结合 电子结构 纳米技术 石墨烯 晶体结构 光电子学 结晶学 化学 数学 几何学 物理 量子力学
作者
Han Yan,Lijun Wu,Zhiqing Wang,Shuang Wang,Ziyue Qian
出处
期刊:Materials today communications [Elsevier]
卷期号:34: 105233-105233 被引量:7
标识
DOI:10.1016/j.mtcomm.2022.105233
摘要

Stone-Wales (SW) defects are widespread in graphene-like materials, which can affect electrical properties of nanostructures. In this paper, the effects of SW defects and applied vertical electric fields of different strengths on the geometric structure and electrical properties of zigzag silicene nanoribbons with different period widths (widths = 2, 3, 4) were studied by using a self-consistent charge density functional tight-binding (SCC-DFTB) method. The presence of SW defects leads to the reconstruction of silicon atoms, the enhancement of the interaction between atoms and the change of bond lengths and bond angles at the location of defects, and the influence of SW-II type defects on the geometric structure of nanoribbons is greater than that of SW-I type defects. The changing trend of the binding energy of perfect structure nanoribbon is related to its period width, regardless of types and the number of defects, while the size of the energy gap changes with the number and position of defects, and the transition between semi-metallic and semiconductor properties occurs. Meanwhile, at the same defect concentration, the effect of SW-I defects on the band structure is more obvious than that of SW-II defects. The electric field breaks the mirror symmetry at the SW defect, and the electronegativity of some atoms changes with the increase of the electric field strength. The defect types do not affect the charge transfer rule of nanoribbons, however, change the amount of charge transfer of the nanoribbons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尔安完成签到,获得积分10
2秒前
科研通AI6应助zheweiwang采纳,获得10
3秒前
方大发布了新的文献求助10
4秒前
5秒前
5秒前
Friday完成签到,获得积分10
5秒前
稳重傲白完成签到 ,获得积分10
7秒前
脑洞疼应助6a采纳,获得10
8秒前
8秒前
8秒前
莎莎发布了新的文献求助10
11秒前
Jasper应助蟹黄堡采纳,获得10
13秒前
博珺辰发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
李爱国应助科研通管家采纳,获得10
18秒前
无极微光应助科研通管家采纳,获得20
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
刻苦藏今完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
自觉鸵鸟发布了新的文献求助10
20秒前
方大完成签到,获得积分10
20秒前
wade2016发布了新的文献求助10
20秒前
21秒前
浮游应助万万没想到采纳,获得10
21秒前
22秒前
KRR发布了新的文献求助30
22秒前
tq关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439