阴极
纳米管
电化学
离子
格子(音乐)
氧化还原
材料科学
阳极
纳米技术
化学工程
化学
物理
碳纳米管
电极
冶金
物理化学
声学
有机化学
工程类
作者
Changliang Du,Youqi Zhu,Xinyu Yang,Zhao Lv,Jiachen Tian,Xiao Pei,Xin Liu,Xilan Ma,Jianhua Hou,Chuanbao Cao
标识
DOI:10.1016/j.cej.2023.141345
摘要
Cation-rich Cu7.2S4 with high Cu2+ mobility has been researched as a promising cathode candidate for rechargeable magnesium batteries, yet suffers from large polarization and sluggish kinetics resulted from strong electrostatic interactions among host lattice and high-charge Mg2+. Herein, lattice expansion by in-situ anion-substitution with heavy element tellurium is presented to regulate the redox chemistry of Cu7.2S4 nanotube cathode. Benefitting from lattice tailoring, the Te-substituted Cu7.2S4 nanotube cathode delivers ultra-high discharge capacity of 354.1 mAh g−1 at 0.1 A g−1 and remarkable rate capability of 85.1 mAh g−1 at large current loading of 2.0 A g−1. The ultra-long cycling stability is achieved for 2000 cycles with 0.0277 % capacity decay per cycle. The significant improvement of Mg2+ storage performances of Te-substituted Cu7.2S4 nanotube can be attributed to the reinforced Te-substitution, that can generate lattice expansion and effectively adjust the Mg2+ storage reaction. The present lattice regulation strategy holds the great potential in electrode material modification for improving battery chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI