Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data

Scheimpflug原理 扩张 接收机工作特性 切断 眼科 圆锥角膜 医学 角膜测厚术 角膜地形图 角膜 病理 内科学 物理 量子力学
作者
Renato Ambrósio,Aydano Pamponet Machado,Edileuza Virginio Leão,João Marcelo G. Lyra,Marcella Q. Salomão,Louise G. Pellegrino Esporcatte,João Batista R. da Fonseca Filho,Erica Ferreira-Meneses,Nelson Sena,Jorge Selem Haddad,Alexandre Batista da Costa Neto,Gildasio Castelo de Almeida,Cynthia J. Roberts,Ahmed Elsheikh,Riccardo Vinciguerra,Paolo Vinciguerra,Jens Bühren,Thomas Kohnen,Guy M. Kezirian,Farhad Hafezi,Nikki Hafezi,Emilio A. Torres‐Netto,Nan‐Ji Lu,David Sung Yong Kang,Omid Kermani,Shizuka Koh,Prema Padmanabhan,Suphi Taneri,William Trattler,Luca Gualdi,José Salgado‐Borges,Fernando Faria-Correia,Elias Flockerzi,Berthold Seitz,Vishal Jhanji,Tommy C. Y. Chan,Pedro Manuel Baptista,Dan Z. Reinstein,Timothy J. Archer,Karolinne Maia Rocha,George O. Waring,Ronald R. Krueger,William J. Dupps,Ramin Khoramnia,Hassan Hashemi,Soheila Asgari,Hamed Momeni‐Moghaddam,Siamak Zarei‐Ghanavati,Rohit Shetty,Pooja Khamar,Michael W. Belin,Bernardo T. Lopes
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:251: 126-142 被引量:41
标识
DOI:10.1016/j.ajo.2022.12.016
摘要

PurposeTo optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection.DesignMulticenter cross-sectional case-control retrospective study.MethodsA total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy.ResultsThe area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001).ConclusionsAI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society. To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. Multicenter cross-sectional case-control retrospective study. A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MH发布了新的文献求助10
刚刚
叶文轩发布了新的文献求助10
刚刚
zxm完成签到,获得积分10
1秒前
以马为梦发布了新的文献求助10
1秒前
合适板栗发布了新的文献求助10
1秒前
1秒前
2秒前
饱满的冰旋完成签到,获得积分10
2秒前
2秒前
赤江之木完成签到 ,获得积分10
2秒前
科研通AI2S应助于生有你采纳,获得10
3秒前
yiqiu发布了新的文献求助10
3秒前
Ava应助Y奥采纳,获得10
3秒前
alison发布了新的文献求助10
4秒前
戚薇发布了新的文献求助10
4秒前
科研通AI6应助简单的幻儿采纳,获得10
4秒前
4秒前
xmf发布了新的文献求助10
4秒前
5秒前
好运连连发布了新的文献求助10
5秒前
晚霞不晚发布了新的文献求助10
5秒前
5秒前
斯文败类应助健康的妙菱采纳,获得10
5秒前
向颜静完成签到,获得积分10
6秒前
6秒前
苯环羟基发布了新的文献求助10
6秒前
科研通AI6应助hongdongxiang采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
万信心发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
8秒前
8秒前
orixero应助qianer采纳,获得10
8秒前
道中道发布了新的文献求助10
9秒前
9秒前
向颜静发布了新的文献求助10
9秒前
情怀应助洁净的士晋采纳,获得10
9秒前
orixero应助管歌采纳,获得10
9秒前
包包琪发布了新的文献求助10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646