清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data

Scheimpflug原理 扩张 接收机工作特性 切断 眼科 圆锥角膜 医学 角膜测厚术 角膜地形图 角膜 病理 内科学 物理 量子力学
作者
Renato Ambrósio,Aydano Pamponet Machado,Edileuza Virginio Leão,João Marcelo G. Lyra,Marcella Q. Salomão,Louise G. Pellegrino Esporcatte,João Batista R. da Fonseca Filho,Erica Ferreira-Meneses,Nelson Sena,Jorge Selem Haddad,Alexandre Batista da Costa Neto,Gildasio Castelo de Almeida,Cynthia J. Roberts,Ahmed Elsheikh,Riccardo Vinciguerra,Paolo Vinciguerra,Jens Bühren,Thomas Kohnen,Guy M. Kezirian,Farhad Hafezi,Nikki Hafezi,Emilio A. Torres‐Netto,Nan‐Ji Lu,David Sung Yong Kang,Omid Kermani,Shizuka Koh,Prema Padmanabhan,Suphi Taneri,William Trattler,Luca Gualdi,José Salgado‐Borges,Fernando Faria-Correia,Elias Flockerzi,Berthold Seitz,Vishal Jhanji,Tommy C. Y. Chan,Pedro Manuel Baptista,Dan Z. Reinstein,Timothy J. Archer,Karolinne Maia Rocha,George O. Waring,Ronald R. Krueger,William J. Dupps,Ramin Khoramnia,Hassan Hashemi,Soheila Asgari,Hamed Momeni‐Moghaddam,Siamak Zarei‐Ghanavati,Rohit Shetty,Pooja Khamar,Michael W. Belin,Bernardo T. Lopes
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:251: 126-142 被引量:41
标识
DOI:10.1016/j.ajo.2022.12.016
摘要

PurposeTo optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection.DesignMulticenter cross-sectional case-control retrospective study.MethodsA total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy.ResultsThe area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001).ConclusionsAI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society. To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. Multicenter cross-sectional case-control retrospective study. A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dong发布了新的文献求助10
15秒前
习月阳完成签到,获得积分10
46秒前
drhwang完成签到,获得积分10
59秒前
zyb完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
杨天天完成签到 ,获得积分10
1分钟前
yxdjzwx完成签到,获得积分10
1分钟前
1分钟前
yuxiaobolab发布了新的文献求助10
1分钟前
2分钟前
KKK发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
zzwwill完成签到,获得积分10
2分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
3分钟前
TTTTTT发布了新的文献求助10
3分钟前
dong发布了新的文献求助10
3分钟前
朴蒲萤荧完成签到,获得积分10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
笑对人生完成签到 ,获得积分10
4分钟前
冷傲迎梅完成签到 ,获得积分10
4分钟前
4分钟前
代代发布了新的文献求助10
4分钟前
代代完成签到,获得积分10
4分钟前
xue完成签到 ,获得积分10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
fed完成签到 ,获得积分10
5分钟前
ww完成签到,获得积分10
6分钟前
胡国伦完成签到 ,获得积分10
6分钟前
clock完成签到 ,获得积分10
6分钟前
炳灿完成签到 ,获得积分10
6分钟前
future完成签到 ,获得积分10
7分钟前
dream完成签到 ,获得积分10
7分钟前
打打应助实验顺顺利利采纳,获得10
7分钟前
科研通AI5应助KKK采纳,获得30
7分钟前
7分钟前
KKK完成签到,获得积分20
7分钟前
V_I_G完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984325
求助须知:如何正确求助?哪些是违规求助? 4235277
关于积分的说明 13189883
捐赠科研通 4027819
什么是DOI,文献DOI怎么找? 2203531
邀请新用户注册赠送积分活动 1215658
关于科研通互助平台的介绍 1133039