Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data

Scheimpflug原理 扩张 接收机工作特性 切断 眼科 圆锥角膜 医学 角膜测厚术 角膜地形图 角膜 病理 内科学 物理 量子力学
作者
Renato Ambrósio,Aydano Pamponet Machado,Edileuza Virginio Leão,João Marcelo G. Lyra,Marcella Q. Salomão,Louise G. Pellegrino Esporcatte,João Batista R. da Fonseca Filho,Erica Ferreira-Meneses,Nelson Sena,Jorge Selem Haddad,Alexandre Batista da Costa Neto,Gildasio Castelo de Almeida,Cynthia J. Roberts,Ahmed Elsheikh,Riccardo Vinciguerra,Paolo Vinciguerra,Jens Bühren,Thomas Kohnen,Guy M. Kezirian,Farhad Hafezi,Nikki Hafezi,Emilio A. Torres‐Netto,Nan‐Ji Lu,David Sung Yong Kang,Omid Kermani,Shizuka Koh,Prema Padmanabhan,Suphi Taneri,William Trattler,Luca Gualdi,José Salgado‐Borges,Fernando Faria-Correia,Elias Flockerzi,Berthold Seitz,Vishal Jhanji,Tommy C. Y. Chan,Pedro Manuel Baptista,Dan Z. Reinstein,Timothy J. Archer,Karolinne Maia Rocha,George O. Waring,Ronald R. Krueger,William J. Dupps,Ramin Khoramnia,Hassan Hashemi,Soheila Asgari,Hamed Momeni‐Moghaddam,Siamak Zarei‐Ghanavati,Rohit Shetty,Pooja Khamar,Michael W. Belin,Bernardo T. Lopes
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:251: 126-142 被引量:41
标识
DOI:10.1016/j.ajo.2022.12.016
摘要

PurposeTo optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection.DesignMulticenter cross-sectional case-control retrospective study.MethodsA total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy.ResultsThe area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001).ConclusionsAI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society. To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. Multicenter cross-sectional case-control retrospective study. A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 “bilateral” keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyc完成签到,获得积分10
刚刚
风清扬发布了新的文献求助10
1秒前
2秒前
酷炫元风发布了新的文献求助10
2秒前
氿囶发布了新的文献求助10
2秒前
刘英坤完成签到,获得积分20
4秒前
大脚仙完成签到,获得积分10
4秒前
6秒前
6秒前
清爽夜雪完成签到,获得积分10
7秒前
feijelly完成签到,获得积分10
8秒前
8秒前
蒋念寒发布了新的文献求助10
9秒前
明天就毕业完成签到,获得积分10
9秒前
9秒前
10秒前
yaozhengjie完成签到,获得积分10
11秒前
椿人发布了新的文献求助10
11秒前
輕語完成签到,获得积分10
11秒前
科研小迷糊完成签到,获得积分20
11秒前
温柔板凳发布了新的文献求助10
13秒前
zhang完成签到,获得积分10
14秒前
daifei完成签到,获得积分10
14秒前
zhangsir完成签到,获得积分10
15秒前
15秒前
此晴可待发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
21秒前
mm发布了新的文献求助10
22秒前
loski发布了新的文献求助10
22秒前
Lucas应助此晴可待采纳,获得10
24秒前
夏尔酱完成签到,获得积分10
24秒前
wanwan应助VitoLi采纳,获得10
25秒前
ELEGENCE发布了新的文献求助10
26秒前
26秒前
田様应助斯文的白晴采纳,获得10
27秒前
清秀的不言完成签到 ,获得积分10
28秒前
于是完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425