亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion

融合 生成对抗网络 生成语法 计算机科学 图像融合 融合规则 前提 图像(数学) 滤波器(信号处理) 计算机视觉 人工智能 模式识别(心理学) 语言学 哲学
作者
Yujing Rao,Dan Wu,Mina Han,Ting Wang,Yang Yang,Tao Leí,Chengjiang Zhou,Haicheng Bai,Lin Xing
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 336-349 被引量:85
标识
DOI:10.1016/j.inffus.2022.12.007
摘要

Infrared and visible image fusion methods aim to combine high-intensity instances and detail texture features into fused images. However, the ability to capture compact features under various adverse conditions is limited because the distribution of these multimodal features is generally cluttered. Therefore, targeted designs are necessary to constrain multimodal features to be compact. In addition, many attempts are not robust for low-quality images under various adverse conditions and the high fusion time of most fusion methods leads to less effective subsequent vision tasks. To address these issues, we propose a generative adversarial network with intensity attention modules and semantic transition modules, termed AT-GAN, which are more efficient to extract key information from multimodal images. The intensity attention modules aim to keep infrared instance features clearly and semantic transition modules attempt to filter out noise or other redundant features in visible texture. Moreover, an adaptive fused equilibrium point can be learned by a quality assessment module. Finally, experiments with variety of datasets reveal that the AT-GAN can adaptively learn features fusion and image reconstruction synchronously and further improve the timeliness under premise of fusion superiority of the proposed method over state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
赵子龙发布了新的文献求助10
8秒前
17秒前
赵子龙完成签到,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
Hayat应助科研通管家采纳,获得20
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
科研通AI6应助YujieJin采纳,获得10
47秒前
胡麻完成签到 ,获得积分10
54秒前
慈祥的丹寒完成签到 ,获得积分10
1分钟前
共享精神应助apriltsy采纳,获得10
1分钟前
小休完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
清修完成签到,获得积分10
1分钟前
zoes完成签到 ,获得积分10
2分钟前
maprang完成签到,获得积分10
2分钟前
maprang发布了新的文献求助20
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
apriltsy发布了新的文献求助10
3分钟前
糯糯汤圆完成签到,获得积分20
3分钟前
3分钟前
4分钟前
4分钟前
狂野的白秋关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
池雨发布了新的文献求助10
4分钟前
yuan完成签到 ,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498336
求助须知:如何正确求助?哪些是违规求助? 4595591
关于积分的说明 14449481
捐赠科研通 4528384
什么是DOI,文献DOI怎么找? 2481460
邀请新用户注册赠送积分活动 1465593
关于科研通互助平台的介绍 1438350