亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion

融合 生成对抗网络 生成语法 计算机科学 图像融合 融合规则 前提 图像(数学) 滤波器(信号处理) 计算机视觉 人工智能 模式识别(心理学) 语言学 哲学
作者
Yujing Rao,Dan Wu,Mina Han,Ting Wang,Yang Yang,Tao Leí,Chengjiang Zhou,Haicheng Bai,Lin Xing
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 336-349 被引量:85
标识
DOI:10.1016/j.inffus.2022.12.007
摘要

Infrared and visible image fusion methods aim to combine high-intensity instances and detail texture features into fused images. However, the ability to capture compact features under various adverse conditions is limited because the distribution of these multimodal features is generally cluttered. Therefore, targeted designs are necessary to constrain multimodal features to be compact. In addition, many attempts are not robust for low-quality images under various adverse conditions and the high fusion time of most fusion methods leads to less effective subsequent vision tasks. To address these issues, we propose a generative adversarial network with intensity attention modules and semantic transition modules, termed AT-GAN, which are more efficient to extract key information from multimodal images. The intensity attention modules aim to keep infrared instance features clearly and semantic transition modules attempt to filter out noise or other redundant features in visible texture. Moreover, an adaptive fused equilibrium point can be learned by a quality assessment module. Finally, experiments with variety of datasets reveal that the AT-GAN can adaptively learn features fusion and image reconstruction synchronously and further improve the timeliness under premise of fusion superiority of the proposed method over state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞天大南瓜完成签到,获得积分10
10秒前
终归完成签到 ,获得积分10
15秒前
15秒前
MchemG应助科研通管家采纳,获得20
22秒前
MchemG应助科研通管家采纳,获得20
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
辉辉应助科研通管家采纳,获得10
22秒前
28秒前
30秒前
Epiphany发布了新的文献求助10
34秒前
13633501455完成签到 ,获得积分10
43秒前
52秒前
犬来八荒发布了新的文献求助10
56秒前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
温婉的凝雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cherry发布了新的文献求助10
2分钟前
2分钟前
昌莆完成签到 ,获得积分10
2分钟前
2分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
3分钟前
平淡映秋发布了新的文献求助10
3分钟前
focus完成签到 ,获得积分10
3分钟前
香菜肉丸发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091