AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion

融合 生成对抗网络 生成语法 计算机科学 图像融合 融合规则 前提 图像(数学) 滤波器(信号处理) 计算机视觉 人工智能 模式识别(心理学) 语言学 哲学
作者
Yujing Rao,Dan Wu,Mina Han,Ting Wang,Yang Yang,Tao Leí,Chengjiang Zhou,Haicheng Bai,Lin Xing
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 336-349 被引量:85
标识
DOI:10.1016/j.inffus.2022.12.007
摘要

Infrared and visible image fusion methods aim to combine high-intensity instances and detail texture features into fused images. However, the ability to capture compact features under various adverse conditions is limited because the distribution of these multimodal features is generally cluttered. Therefore, targeted designs are necessary to constrain multimodal features to be compact. In addition, many attempts are not robust for low-quality images under various adverse conditions and the high fusion time of most fusion methods leads to less effective subsequent vision tasks. To address these issues, we propose a generative adversarial network with intensity attention modules and semantic transition modules, termed AT-GAN, which are more efficient to extract key information from multimodal images. The intensity attention modules aim to keep infrared instance features clearly and semantic transition modules attempt to filter out noise or other redundant features in visible texture. Moreover, an adaptive fused equilibrium point can be learned by a quality assessment module. Finally, experiments with variety of datasets reveal that the AT-GAN can adaptively learn features fusion and image reconstruction synchronously and further improve the timeliness under premise of fusion superiority of the proposed method over state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗月青影完成签到,获得积分10
6秒前
imagine完成签到,获得积分10
8秒前
10秒前
任性的向薇完成签到,获得积分10
12秒前
我是老大应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
NICAI应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得20
13秒前
ding应助科研通管家采纳,获得10
13秒前
小葵花完成签到 ,获得积分10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
拼搏应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
小新应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Verity应助科研通管家采纳,获得10
14秒前
小新应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
16秒前
韩涵完成签到 ,获得积分10
18秒前
19秒前
adoudoo完成签到 ,获得积分10
20秒前
Jodie发布了新的文献求助10
24秒前
GaoChenxi完成签到 ,获得积分10
24秒前
大芳儿完成签到,获得积分10
27秒前
shuide完成签到,获得积分20
28秒前
深情安青应助莉莉子采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555