TC-GATN: Temporal Causal Graph Attention Networks With Nonlinear Paradigm for Multivariate Time-Series Forecasting in Industrial Processes

计算机科学 图形 人工智能 时间序列 非线性系统 图论 多元统计 数据挖掘 机器学习 理论计算机科学 数学 量子力学 组合数学 物理
作者
Jince Li,Yilin Shi,Hongguang Li,Bo Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7592-7601 被引量:6
标识
DOI:10.1109/tii.2022.3211330
摘要

Multivariate time-series (MTS) forecasting plays an important role in industrial process monitoring, control, and optimization. Usually, hierarchical interactive behaviors among industrial MTS have formed complex nonlinear causal characteristics, which greatly hinders the applications of the existing predictive models. It is found that graph attention networks (GATs) provide technical ideas to meet this challenge. However, the unknown directed graph and linear conversions of node information make conventional GATs less popular for the industrial fields. In this article, we propose a novel prediction model termed as temporal causal graph attention networks with nonlinear paradigms (TC-GATN) to adequately capture inherent dependencies on industrial MTS. Specifically, the graph learning algorithm concerning the Granger causality is exploited to extract potential relationships among multiple variables for guiding directional edge connections of the hierarchy. Then, parallel gated recurrent unit encoders located in the graph neighborhood space are introduced to perform the nonlinear interaction of node features, which accomplishes the adaptive transformation and transmission. The self-attention mechanism is further employed to aggregate encoder hidden states across all the stages. Finally, a temporal module is supplemented to process information from the graph layer, achieving satisfactory predictions. The feasibility and effectiveness of the TC-GATN are validated by two actual datasets from the methanol production and the chlorosilane distillation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助AlanLi采纳,获得10
刚刚
脑洞疼应助云梦泽采纳,获得10
刚刚
贪玩绮南完成签到,获得积分10
1秒前
武雨寒发布了新的文献求助10
2秒前
franklylyly完成签到,获得积分10
2秒前
sunshine发布了新的文献求助10
2秒前
香蕉觅云应助健忘的梦旋采纳,获得10
3秒前
3秒前
锅子完成签到 ,获得积分10
3秒前
雨中过客完成签到,获得积分10
3秒前
zzzzz完成签到,获得积分10
3秒前
上官若男应助帅气书白采纳,获得10
4秒前
小啦啦3082完成签到 ,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
合适台灯发布了新的文献求助10
8秒前
FashionBoy应助fsky采纳,获得10
10秒前
ZH发布了新的文献求助10
11秒前
种桃老总发布了新的文献求助10
11秒前
小草发布了新的文献求助10
12秒前
14秒前
xxxllllll完成签到,获得积分10
14秒前
超靓诺言发布了新的文献求助10
15秒前
11完成签到,获得积分10
15秒前
追寻的怜容完成签到,获得积分10
15秒前
无奈醉柳完成签到 ,获得积分10
15秒前
16秒前
科目三应助热心小松鼠采纳,获得10
16秒前
16秒前
ding应助热心小松鼠采纳,获得10
16秒前
FashionBoy应助Wu采纳,获得10
16秒前
打打应助热心小松鼠采纳,获得10
16秒前
16秒前
小二郎应助热心小松鼠采纳,获得10
17秒前
彭于晏应助热心小松鼠采纳,获得10
17秒前
17秒前
友好的灯泡完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432