R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 物理 贝叶斯概率 电信 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simon_chat完成签到,获得积分0
刚刚
1秒前
李nb发布了新的文献求助10
1秒前
科研通AI6应助香菜头采纳,获得10
1秒前
留白发布了新的文献求助20
1秒前
852应助Avery采纳,获得10
1秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
不安青牛应助科研通管家采纳,获得10
2秒前
QLLW应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
嘿嘿应助科研通管家采纳,获得30
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
栀尽夏完成签到,获得积分10
3秒前
嘿嘿应助科研通管家采纳,获得30
3秒前
QLLW应助科研通管家采纳,获得10
3秒前
realha发布了新的文献求助10
3秒前
1111应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
高山和鸟应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
1111应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
嘿嘿应助科研通管家采纳,获得30
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
5秒前
RenSiyu发布了新的文献求助10
5秒前
李nb完成签到,获得积分10
5秒前
迪迦7777应助一一采纳,获得10
5秒前
Bu完成签到,获得积分10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715