R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 物理 贝叶斯概率 电信 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘桑桑完成签到,获得积分10
1秒前
1秒前
Fortune完成签到,获得积分10
1秒前
执着念烟完成签到,获得积分10
1秒前
指南针发布了新的文献求助10
2秒前
2秒前
喂喂醒醒晚安了完成签到,获得积分10
4秒前
pluto应助冰美式不加糖采纳,获得10
4秒前
Fortune发布了新的文献求助10
5秒前
天天快乐应助xccc采纳,获得10
5秒前
6秒前
7秒前
7秒前
青葱之松完成签到,获得积分10
8秒前
浮游应助地啦啦啦采纳,获得10
8秒前
机智的弱发布了新的文献求助10
10秒前
lokiyyy发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
999999发布了新的文献求助10
12秒前
12秒前
BYC发布了新的文献求助10
15秒前
大个应助xiankanyun采纳,获得10
15秒前
YUJIALING完成签到 ,获得积分10
15秒前
司忆发布了新的文献求助10
15秒前
张倩发布了新的文献求助10
16秒前
文欣妍完成签到,获得积分10
17秒前
SONG完成签到,获得积分10
18秒前
慕青应助AKA采纳,获得10
19秒前
21秒前
21秒前
SciGPT应助跳跃的小林采纳,获得10
21秒前
23秒前
SONG发布了新的文献求助10
25秒前
999999发布了新的文献求助10
26秒前
IU2021发布了新的文献求助10
27秒前
清秀冰岚完成签到,获得积分10
28秒前
杨德帅发布了新的文献求助10
28秒前
充电宝应助马不停蹄采纳,获得10
29秒前
善学以致用应助欣喜冷卉采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768