R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 物理 贝叶斯概率 电信 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcz完成签到,获得积分10
2秒前
2秒前
颜枫莹完成签到,获得积分10
3秒前
李健的小迷弟应助tutu采纳,获得10
3秒前
mafukairi应助12365采纳,获得10
3秒前
4秒前
无花果应助三水采纳,获得10
5秒前
5秒前
5秒前
8秒前
8秒前
小蘑菇应助紫津采纳,获得10
8秒前
9秒前
9秒前
美丽万声发布了新的文献求助10
9秒前
烟雨江南发布了新的文献求助10
9秒前
予光完成签到 ,获得积分10
9秒前
烟花应助医路有你采纳,获得10
10秒前
GG完成签到 ,获得积分10
10秒前
小白完成签到,获得积分20
10秒前
123_完成签到,获得积分20
11秒前
Medicovv完成签到,获得积分10
12秒前
12秒前
刘恋完成签到,获得积分10
12秒前
wlei发布了新的文献求助10
13秒前
无心客应助迪克大采纳,获得20
13秒前
kkc发布了新的文献求助30
13秒前
cw发布了新的文献求助10
13秒前
13秒前
张叮当完成签到,获得积分10
13秒前
Hilda007应助时尚友安采纳,获得10
14秒前
xcz发布了新的文献求助10
14秒前
r93527005发布了新的文献求助10
14秒前
香蕉觅云应助认真盼夏采纳,获得10
14秒前
15秒前
向前完成签到,获得积分10
15秒前
16秒前
16秒前
无花果应助我我我采纳,获得10
17秒前
执着乐双完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445