R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 电信 贝叶斯概率 物理 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zym完成签到,获得积分10
2秒前
2秒前
白昼画家发布了新的文献求助10
2秒前
zobrzg发布了新的文献求助10
3秒前
王爷教你白给完成签到 ,获得积分10
3秒前
3秒前
正直的山雁完成签到,获得积分10
3秒前
秀丽涵双发布了新的文献求助20
3秒前
小羊完成签到,获得积分10
4秒前
K99发布了新的文献求助10
5秒前
5秒前
搜集达人应助Peetvader采纳,获得10
5秒前
李家奇完成签到,获得积分10
5秒前
6秒前
6秒前
遇上就这样吧应助Du采纳,获得10
6秒前
Dogged完成签到 ,获得积分10
6秒前
zfj发布了新的文献求助10
6秒前
7秒前
贾哲宇发布了新的文献求助10
8秒前
xiaowu应助123采纳,获得10
8秒前
落后项链发布了新的文献求助10
8秒前
科研通AI6应助lyh采纳,获得10
9秒前
9秒前
康康发布了新的文献求助10
11秒前
Ikkyu发布了新的文献求助10
11秒前
12秒前
linnnn完成签到,获得积分10
12秒前
12秒前
iwsaml完成签到 ,获得积分10
12秒前
13秒前
Linden_bd完成签到 ,获得积分10
14秒前
14秒前
14秒前
Owen应助Mr.Left采纳,获得10
14秒前
白昼画家完成签到,获得积分10
15秒前
15秒前
Boniu_wang完成签到,获得积分10
15秒前
CipherSage应助随便吧采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096