已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 物理 贝叶斯概率 电信 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助跳跃采纳,获得10
刚刚
刚刚
王者归来完成签到,获得积分10
2秒前
2秒前
Cloud发布了新的文献求助10
5秒前
6秒前
7秒前
CodeCraft应助读书的时候采纳,获得10
7秒前
繁星长明应助科研通管家采纳,获得10
7秒前
繁星长明应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
Momomo应助科研通管家采纳,获得10
8秒前
繁星长明应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
yyds应助科研通管家采纳,获得50
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
心灵美鑫完成签到 ,获得积分10
9秒前
跳跃发布了新的文献求助10
11秒前
12秒前
12秒前
阳光的灵竹完成签到,获得积分10
13秒前
自然的含蕾完成签到 ,获得积分10
14秒前
紫焰完成签到 ,获得积分10
15秒前
傲娇的曼香完成签到,获得积分10
17秒前
任性的棒棒糖完成签到,获得积分10
18秒前
跳跃完成签到,获得积分10
20秒前
20秒前
赏金猎人John_Wang完成签到,获得积分10
23秒前
Viiigo完成签到,获得积分10
26秒前
单薄的烧鹅完成签到,获得积分10
26秒前
孙仙女完成签到,获得积分20
30秒前
二三完成签到 ,获得积分10
31秒前
爱笑的书蝶完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731373
求助须知:如何正确求助?哪些是违规求助? 5329767
关于积分的说明 15320909
捐赠科研通 4877444
什么是DOI,文献DOI怎么找? 2620313
邀请新用户注册赠送积分活动 1569588
关于科研通互助平台的介绍 1526075