亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 物理 贝叶斯概率 电信 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
啦啦啦啦发布了新的文献求助10
8秒前
Xixicccccccc发布了新的文献求助10
11秒前
xgq关注了科研通微信公众号
30秒前
33秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
39秒前
科研通AI6.1应助liuliu采纳,获得30
47秒前
52秒前
11发布了新的文献求助10
58秒前
友好绿柏发布了新的文献求助10
1分钟前
小马甲应助dawn采纳,获得10
1分钟前
1分钟前
dawn发布了新的文献求助10
1分钟前
善学以致用应助Fluoxtine采纳,获得10
2分钟前
黑鲨完成签到 ,获得积分10
2分钟前
Ava应助粗暴的坤采纳,获得10
2分钟前
瘦瘦的迎南完成签到 ,获得积分10
2分钟前
2分钟前
谷雨秋发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
J_Xu完成签到 ,获得积分10
2分钟前
所所应助凛玖niro采纳,获得10
3分钟前
3分钟前
凛玖niro发布了新的文献求助10
3分钟前
霖槿完成签到,获得积分10
3分钟前
3分钟前
十八完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
liuliu发布了新的文献求助30
4分钟前
5分钟前
烟花应助Li采纳,获得10
5分钟前
liuliu完成签到,获得积分20
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587