已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images

计算机科学 目标检测 探测器 人工智能 高斯分布 最小边界框 计算机视觉 先验概率 推论 对象(语法) 采样(信号处理) 超参数 模式识别(心理学) 算法 图像(数学) 电信 贝叶斯概率 物理 量子力学
作者
Fei Liu,Renwen Chen,Junyi Zhang,Kailing Xing,Hao Liu,Jinchang Qin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2022.3215472
摘要

Existing anchor-based rotated object detection methods have achieved some amazing results, but these methods require some manual preset anchors, which not only introduce additional hyperparameters but also introduce extra computational burdens. Due to the above drawbacks, anchor-free methods have been rapidly developed in recent years. However, the existing high-performance anchor-free rotated object detection methods are relatively complex and the inference speed is also slow. And Yolo series models not only maintain high-efficiency inference but also keep competitive performance detection performance in the general object detection tasks. Hence, we propose an anchor-free rotated detector based on the YOLOX method for object detection in aerial images. Our methods consist of two improvements: a Refined Rotated Module (RRM) and a new assigner method which is called the Gaussian distribution Sampling Optimal Transport Assignment method (GSOTA). The RRM can align features and get more useful priors for final detector heads. The GSOTA uses Gaussian Distribution to model the oriented bounding box (OBB) firstly, and a Gaussian Center Sampling method (GCS) with maximum classification center mean (MCCM) is proposed to simplify the label Assignment Optimal Transport problem, finally using an improved dynamic top-k strategy to get an approximate solution. Extensive experiments demonstrate that our models can achieve competitive performance in several challenging aerial object detection datasets while keeping the best efficiency. Our R2YOLOX-X model achieves 79.33%, 97.4%, 97.7%, and 92.5% mAP on the DOTA, HRSC2016, UCAS-AOD, and FGSD2021, respectively, while R2YOLOX-S can reach the fastest 58.2 FPS when inferencing on aerial datasets and R2YOLOX-L gets the best speed-accuracy trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解青文发布了新的文献求助10
1秒前
杨杨杨完成签到,获得积分10
3秒前
杨杨杨发布了新的文献求助100
7秒前
何小熊发布了新的文献求助10
12秒前
CNS大王完成签到,获得积分10
13秒前
14秒前
小凯发布了新的文献求助20
14秒前
15秒前
17秒前
18秒前
19秒前
Tumbleweed668发布了新的文献求助10
20秒前
飞逝的快乐时光完成签到 ,获得积分10
20秒前
萧水白应助qiangy采纳,获得10
21秒前
多情的夜安完成签到,获得积分10
22秒前
Cutewm发布了新的文献求助10
22秒前
CipherSage应助敏感的机器猫采纳,获得10
22秒前
对3药不起发布了新的文献求助10
23秒前
冯珂完成签到 ,获得积分10
24秒前
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
07应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得20
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
genomed应助科研通管家采纳,获得10
25秒前
25秒前
徐瑶瑶发布了新的文献求助10
28秒前
28秒前
29秒前
对3药不起完成签到,获得积分10
31秒前
31秒前
31秒前
第三个冬天的十二月完成签到 ,获得积分10
32秒前
潼熙甄完成签到,获得积分10
32秒前
Ranrunn完成签到 ,获得积分10
34秒前
英俊的铭应助徐瑶瑶采纳,获得10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755