Cataract is one of the leading causes of blindness worldwide and surgery is the only available treatment. Pharmacological therapy has emerged as a potential approach to combat the global shortage of surgery due to a lack of access and resources. This review summarizes recent findings in pharmacological treatment and delivery, focusing on drugs that target oxidative stress and the aggregation of crystallins.Antioxidants and oxysterols have been shown to improve or reverse lens opacity in cataract models. N-acetylcysteine amide and N-acetylcarnosine are two compounds that have increased bioavailability over their precursors, alleviating the challenges that have come with topical administration. Studies have shown promising results, with topical N-acetylcarnosine clinically decreasing lens opacity. Furthermore, lanosterol, and more recently 5-cholesten-3b,25-diol (VP1-001), have been reported to combat the aggregation of crystallins in vivo and ex vivo . Delivery has improved with the use of nanotechnology, but further research is needed to solidify these compounds' therapeutic effects on cataracts and improve delivery methods to the lens.Although further research in drug dosage, delivery, and mechanisms will need to be conducted, pharmacologic therapies have provided new strategies and treatments for the reversal of cataracts.