Spatio-Temporal Clustering of Multi-Location Time Series to Model Seasonal Influenza Spread

聚类分析 时间序列 代理(统计) 时态数据库 计算机科学 地理 星团(航天器) 空间分析 空间生态学 层次聚类 数据挖掘 空间流行病学 爆发 人工智能 医学 机器学习 流行病学 遥感 生态学 程序设计语言 病毒学 内科学 生物
作者
Hootan Kamran,Dionne M. Aleman,Michael Carter,Kieran Moore
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2138-2148 被引量:1
标识
DOI:10.1109/jbhi.2023.3234818
摘要

Although seasonal influenza disease spread is a spatio-temporal phenomenon, public surveillance systems aggregate data only spatially, and are rarely predictive. We develop a hierarchical clustering-based machine learning tool to anticipate flu spread patterns based on historical spatio-temporal flu activity, where we use historical influenza-related emergency department records as a proxy for flu prevalence. This analysis replaces conventional geographical hospital clustering with clusters based on both spatial and temporal distance between hospital flu peaks to generate a network illustrating whether flu spreads between pairs of clusters (direction) and how long that spread takes (magnitude). To overcome data sparsity, we take a model-free approach, treating hospital clusters as a fully-connected network, where arcs indicate flu transmission. We perform predictive analysis on the clusters' time series of flu ED visits to determine direction and magnitude of flu travel. Detection of recurrent spatio-temporal patterns may help policymakers and hospitals better prepare for outbreaks. We apply this tool to Ontario, Canada using a five-year historical dataset of daily flu-related ED visits, and find that in addition to expected flu spread between major cities/airport regions, we were able to illuminate previously unsuspected patterns of flu spread between non-major cities, providing new insights for public health officials. We showed that while a spatial clustering outperforms a temporal clustering in terms of the direction of the spread (81% spatial v. 71% temporal), the opposite is true in terms of the magnitude of the time lag (20% spatial v. 70% temporal).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代的访曼应助kk采纳,获得20
刚刚
木子完成签到,获得积分10
1秒前
所所应助轻松聪展采纳,获得10
1秒前
大个应助辣椒炖桃采纳,获得10
2秒前
2秒前
2秒前
2秒前
南京喵科大学完成签到,获得积分10
3秒前
5秒前
俊逸沛菡完成签到 ,获得积分10
5秒前
所所应助壮观的文龙采纳,获得10
5秒前
二枫忆桑完成签到,获得积分10
5秒前
看风景悠然在路完成签到,获得积分10
5秒前
慕青应助标致的碧蓉采纳,获得10
6秒前
bkagyin应助光光采纳,获得10
6秒前
辛木完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
zz完成签到 ,获得积分20
6秒前
果实发布了新的文献求助10
7秒前
zzzzzzj发布了新的文献求助10
7秒前
8秒前
9秒前
雨曦发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
cooper完成签到 ,获得积分10
12秒前
谷雨下完成签到,获得积分10
12秒前
今后应助yqzhang采纳,获得10
12秒前
轻松聪展发布了新的文献求助10
13秒前
13秒前
万能图书馆应助格林奇采纳,获得10
15秒前
Polaris发布了新的文献求助10
16秒前
在水一方应助落寞电灯胆采纳,获得10
16秒前
彭于晏应助朴实山兰采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149