An efficient online outlier recognition method of dam monitoring data based on improved M-robust regression

离群值 四分位数 残余物 稳健回归 计算机科学 异常检测 统计 杠杆(统计) 数据挖掘 瓶颈 数学 人工智能 算法 置信区间 嵌入式系统
作者
Han Zhang,Jiankang Chen,Zhang Fang,Zhiliang Gao,Huibao Huang,Yanling Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (1): 581-599 被引量:6
标识
DOI:10.1177/14759217221102060
摘要

Common anomaly recognition methods are easy to misjudge and miss outliers for the online monitoring data. This is a bottleneck problem that needs to be overcome in dam safety management moving toward informatization. Based on the data of nine hydropower stations along Dadu River Basin, this paper analyzed existing problems of the common anomaly identification method and an algorithm was proposed based on improved M-robust regression recognition. In this algorithm, the AR factor was introduced to avoid the defect that the traditional model cannot simulate random variables. The extreme value method and robust estimation were utilized to avoid the leverage effect. The model collapse caused by maximum measured value was avoided through improving the residual calculation model of M-robust and optimizing the weight distribution function. The maximum of the three values, residual quartile difference, discrete quartile difference, and measurement accuracy, was used as an anomaly recognition criterion to improve the evaluation criteria. The algorithm compiled was used in the Dadu River Company since 2017. The statistics showed that for the 150,000 measured values per day, the evaluation time could be within 15 min, the missed judgment rate was 0%, and the misjudgment rate was less than 2%. The proposed algorithm achieved a great improvement and can meet the needs of online outlier recognition in dam safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼妙菱发布了新的文献求助10
1秒前
1秒前
MizzZeus完成签到,获得积分10
1秒前
1秒前
善学以致用应助up采纳,获得10
1秒前
2秒前
ll发布了新的文献求助10
2秒前
星辰大海应助蚕宝宝小子采纳,获得10
3秒前
雪白的面包完成签到 ,获得积分10
4秒前
类囊体薄膜完成签到,获得积分10
4秒前
absb完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
大个应助Forez采纳,获得10
5秒前
王小元发布了新的文献求助10
5秒前
pincoudegushi发布了新的文献求助10
5秒前
6秒前
yx_cheng应助自觉妖妖采纳,获得30
8秒前
光亮青柏完成签到 ,获得积分10
8秒前
8秒前
namk完成签到,获得积分10
9秒前
Momo发布了新的文献求助10
9秒前
昏睡的蟠桃应助巫凝天采纳,获得300
9秒前
星辰大海应助T拐拐采纳,获得10
10秒前
10秒前
Bio应助美好斓采纳,获得30
11秒前
11秒前
11秒前
ll完成签到,获得积分10
12秒前
科研长颈鹿完成签到,获得积分10
12秒前
峥2发布了新的文献求助10
12秒前
pincoudegushi完成签到,获得积分10
12秒前
ohxixixi发布了新的文献求助10
13秒前
酷酷的库库完成签到,获得积分10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
ZGZ123应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650