Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks

正规化(语言学) 计算机科学 卷积神经网络 人工智能 深度学习 迭代重建 迭代法 深层神经网络 人工神经网络 模式识别(心理学) 压缩传感 机器学习 构造(python库) 算法 程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要

Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zho发布了新的文献求助10
1秒前
失眠无声发布了新的文献求助10
2秒前
Gyt.发布了新的文献求助10
2秒前
2秒前
3秒前
TJN完成签到 ,获得积分10
4秒前
4秒前
cola发布了新的文献求助10
4秒前
义气凝阳发布了新的文献求助10
5秒前
5秒前
yixing发布了新的文献求助10
5秒前
读的很痛苦完成签到,获得积分10
5秒前
Jay发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
秋云山月完成签到,获得积分10
7秒前
阿宝完成签到,获得积分10
7秒前
简w发布了新的文献求助10
7秒前
LaTeXer应助善良傲柏采纳,获得50
8秒前
znn发布了新的文献求助10
8秒前
热心市民远完成签到,获得积分10
9秒前
默默发布了新的文献求助10
9秒前
cola完成签到,获得积分10
10秒前
Mi完成签到 ,获得积分10
10秒前
Forestzoo应助axn采纳,获得10
10秒前
阿宝发布了新的文献求助10
11秒前
djkdjkf完成签到,获得积分10
11秒前
梦XING发布了新的文献求助10
11秒前
victor应助wjx采纳,获得10
11秒前
领导范儿应助zhaxiao采纳,获得10
12秒前
kk应助行7采纳,获得10
14秒前
14秒前
Lucas应助minion采纳,获得10
14秒前
Jay完成签到,获得积分10
17秒前
柒柒发布了新的文献求助10
17秒前
18秒前
情怀应助庞鲂采纳,获得30
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219