Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks

正规化(语言学) 计算机科学 卷积神经网络 人工智能 深度学习 迭代重建 迭代法 深层神经网络 人工神经网络 模式识别(心理学) 压缩传感 机器学习 构造(python库) 算法 程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要

Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
小云杉发布了新的文献求助10
1秒前
我先睡了发布了新的文献求助10
3秒前
木谦发布了新的文献求助10
4秒前
5秒前
受伤破茧发布了新的文献求助10
7秒前
小二郎应助yummy采纳,获得10
7秒前
Gdddd完成签到,获得积分10
8秒前
完美世界应助jerry_x采纳,获得10
8秒前
活力皮皮虾完成签到,获得积分10
8秒前
8秒前
蟒玉朝天完成签到 ,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
Orange应助a553355采纳,获得10
12秒前
13秒前
Hcc发布了新的文献求助10
13秒前
1111发布了新的文献求助10
14秒前
14秒前
14秒前
呆萌的傲之完成签到,获得积分10
14秒前
隐形的星月完成签到,获得积分20
15秒前
JamesPei应助受伤破茧采纳,获得10
15秒前
152完成签到 ,获得积分10
15秒前
16秒前
16秒前
CipherSage应助潇洒斑马采纳,获得30
17秒前
17秒前
张启凤完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
大轩发布了新的文献求助10
18秒前
19秒前
命苦科研人完成签到,获得积分10
20秒前
a553355发布了新的文献求助10
20秒前
111发布了新的文献求助10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729040
求助须知:如何正确求助?哪些是违规求助? 5315724
关于积分的说明 15315600
捐赠科研通 4876049
什么是DOI,文献DOI怎么找? 2619186
邀请新用户注册赠送积分活动 1568758
关于科研通互助平台的介绍 1525247