Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks

正规化(语言学) 计算机科学 卷积神经网络 人工智能 深度学习 迭代重建 迭代法 深层神经网络 人工神经网络 模式识别(心理学) 压缩传感 机器学习 构造(python库) 算法 程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要

Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花花花完成签到 ,获得积分10
1秒前
3秒前
4秒前
肉肉完成签到 ,获得积分10
4秒前
cancan完成签到,获得积分10
5秒前
zhuangbaobao发布了新的文献求助10
8秒前
郭6666发布了新的文献求助10
9秒前
完美世界应助留胡子的火采纳,获得10
14秒前
脑洞疼应助郭6666采纳,获得10
14秒前
公冶愚志完成签到,获得积分10
17秒前
威武的皮卡丘完成签到,获得积分10
23秒前
23秒前
23秒前
大龙哥886应助ri_290采纳,获得10
24秒前
sevenhill应助Devastating采纳,获得10
26秒前
26秒前
今后应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得30
27秒前
拼搏应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得20
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
小新应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
鬼切关注了科研通微信公众号
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
无极微光应助科研通管家采纳,获得20
27秒前
scaler完成签到,获得积分10
28秒前
29秒前
xinbowey发布了新的文献求助10
29秒前
xiao完成签到 ,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555