正规化(语言学)
计算机科学
卷积神经网络
人工智能
深度学习
迭代重建
迭代法
深层神经网络
人工神经网络
模式识别(心理学)
压缩传感
机器学习
构造(python库)
算法
程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要
Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.
科研通智能强力驱动
Strongly Powered by AbleSci AI