Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks

正规化(语言学) 计算机科学 卷积神经网络 人工智能 深度学习 迭代重建 迭代法 深层神经网络 人工神经网络 模式识别(心理学) 压缩传感 机器学习 构造(python库) 算法 程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要

Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
含蓄绿兰发布了新的文献求助10
刚刚
zyz发布了新的文献求助10
1秒前
namelorna完成签到,获得积分10
1秒前
1秒前
慕青应助HighFeng_Lei采纳,获得10
2秒前
YanZ830发布了新的文献求助10
2秒前
crystal发布了新的文献求助10
2秒前
2秒前
TT完成签到,获得积分10
3秒前
3秒前
沉默的觅海完成签到,获得积分10
3秒前
4秒前
赘婿应助伦纳德采纳,获得30
4秒前
Yang完成签到,获得积分10
4秒前
ranj发布了新的文献求助10
4秒前
单纯胡萝卜完成签到,获得积分10
4秒前
义气若冰完成签到,获得积分10
4秒前
研友_VZG7GZ应助huizi采纳,获得10
5秒前
5秒前
pluto应助淬h采纳,获得10
6秒前
香蕉觅云应助淬h采纳,获得10
6秒前
yimi完成签到,获得积分10
6秒前
an发布了新的文献求助10
6秒前
6秒前
机智的寻真完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
UP完成签到,获得积分10
7秒前
123456完成签到,获得积分20
8秒前
9秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
马蹄发布了新的文献求助10
10秒前
10秒前
Giinjju发布了新的文献求助10
10秒前
10秒前
惊执虫儿发布了新的文献求助10
10秒前
CipherSage应助张冰倩采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054