Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks

正规化(语言学) 计算机科学 卷积神经网络 人工智能 深度学习 迭代重建 迭代法 深层神经网络 人工神经网络 模式识别(心理学) 压缩传感 机器学习 构造(python库) 算法 程序设计语言
作者
Andreas Kofler,Christian Wald,Tobias Schaeffter,Markus Haltmeier,Christoph Kolbitsch
标识
DOI:10.23919/eusipco55093.2022.9909604
摘要

Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using a model which reflects the assumed properties of the signals or adaptively learned during the reconstruction - yielding so-called blind Compressed Sensing approaches. However, by doing so, the transforms are never explicitly trained in conjunction with the physical model which generates the signals. In addition, properly choosing the involved regularization parameters remains a challenging task. Another recently emerged training-paradigm for regularization methods is to use iterative neural networks (INNs) - also known as unrolled networks - which contain the physical model. In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm. We evaluated the proposed approach by applying it to a realistic large-scale dynamic MR reconstruction problem and compared it to several other recently published works. We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN. Further, it does not require to choose the regularization parameters and - in contrast to deep INNs - each network component is entirely interpretable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
落寞晓灵完成签到,获得积分10
1秒前
ORAzzz应助翠翠采纳,获得20
2秒前
zoe完成签到,获得积分10
2秒前
习习应助学术小白采纳,获得10
2秒前
3秒前
4秒前
tianny关注了科研通微信公众号
5秒前
5秒前
CO2发布了新的文献求助10
5秒前
桐桐应助zhangscience采纳,获得10
6秒前
求助发布了新的文献求助10
7秒前
buno应助zoe采纳,获得10
8秒前
junzilan发布了新的文献求助10
8秒前
8秒前
细品岁月完成签到 ,获得积分10
8秒前
细心书蕾完成签到 ,获得积分10
9秒前
无花果应助l11x29采纳,获得10
11秒前
11秒前
老詹头发布了新的文献求助10
11秒前
思源应助叫滚滚采纳,获得10
12秒前
13秒前
刘歌完成签到 ,获得积分10
13秒前
阿巡完成签到,获得积分10
13秒前
Chen完成签到,获得积分10
15秒前
LSH970829发布了新的文献求助10
15秒前
哈哈哈完成签到 ,获得积分10
16秒前
汤姆完成签到,获得积分10
16秒前
18秒前
18秒前
翠翠完成签到,获得积分10
19秒前
19秒前
LSH970829完成签到,获得积分10
20秒前
Lyg完成签到,获得积分20
21秒前
坚强的樱发布了新的文献求助10
21秒前
baodingning完成签到,获得积分10
22秒前
22秒前
公茂源发布了新的文献求助30
22秒前
热爱完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808