亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aerothermal Heating Correlations at Stagnation Point/Line in Low-Enthalpy Hypersonic Flow

停滞点 停滞温度 滞止焓 高超音速 滞止压力 高超音速流动 机械 材料科学 直线(几何图形) 航空航天工程 流量(数学) 物理 热力学 马赫数 传热 工程类 几何学 数学
作者
Bingkang Zhou,Xiangyu Yi,Zhaowei Wang,Zhufei Li
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (3): 1435-1439
标识
DOI:10.2514/1.j062455
摘要

No AccessTechnical NotesAerothermal Heating Correlations at Stagnation Point/Line in Low-Enthalpy Hypersonic FlowBingkang Zhou, Xiangyu Yi, Zhaowei Wang and Zhufei LiBingkang ZhouUniversity of Science and Technology of China, 230027 Hefei, People’s Republic of China*Ph.D. Student, Department of Modern Mechanics.Search for more papers by this author, Xiangyu YiChina Academy of Aerospace Aerodynamics, 100074 Beijing, People’s Republic of China†Senior Engineer.Search for more papers by this author, Zhaowei WangChina Academy of Launch Vehicle Technology, 100076 Beijing, People’s Republic of China‡Researcher.Search for more papers by this author and Zhufei LiUniversity of Science and Technology of China, 230027 Hefei, People’s Republic of China§Associate Professor, Department of Modern Mechanics; (Corresponding Author).Search for more papers by this authorPublished Online:3 Jan 2023https://doi.org/10.2514/1.J062455SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Bertin J. J. and Cummings R. M., “Critical Hypersonic Aerothermodynamic Phenomena,” Annual Review of Fluid Mechanics, Vol. 38, Jan. 2006, pp. 129–157. https://doi.org/10.1146/annurev.fluid.38.050304.092041 CrossrefGoogle Scholar[2] Li Z., Zhang Z., Wang J. and Yang J., “Pressure-Heat Flux Correlations for Shock Interactions on V-Shaped Blunt Leading Edges,” AIAA Journal, Vol. 56, No. 1, 2019, pp. 356–367. https://doi.org/10.2514/1.J058538 Google Scholar[3] Xiao F., Li Z., Zhang Z., Zhu Y. and Yang J., “Hypersonic Shock Wave Interactions on a V-Shaped Blunt Leading Edge,” AIAA Journal, Vol. 56, No. 1, 2018, pp. 356–367. https://doi.org/10.2514/1.J055915 LinkGoogle Scholar[4] Zhang Z., Li Z. and Yang J., “Transitions of Shock Interactions on V-Shaped Blunt Leading Edges,” Journal of Fluid Mechanics, Vol. 912, April 2021, Paper A12. https://doi.org/10.1017/jfm.2020.1117 Google Scholar[5] Anderson J. D., Hypersonic and High-Temperature Gas Dynamics, 2nd ed., AIAA, Reston, VA, 2006, pp. 261–374. https://doi.org/10.2514/4.861956 LinkGoogle Scholar[6] Bertin J. J., Hypersonic Aerothermodynamics, AIAA, Washington, D.C., 1994, pp. 231–276. https://doi.org/10.2514/4.470363 Google Scholar[7] Park S. H., Neeb D., Plyushchev G., Leyland P. and Gülhan A., “A Study on Heat Flux Predictions for Re-Entry Flight Analysis,” Acta Astronautica, Vol. 187, Oct. 2021, pp. 271–280. https://doi.org/10.1016/j.actaastro.2021.06.025 CrossrefGoogle Scholar[8] Tauber M. E., “A Review of High-Speed, Convective, Heat-Transfer Computation Methods,” NASA TP-2914, 1989. Google Scholar[9] West T. K. and Brandis A. M., “Stagnation-Point Aeroheating Correlations for Mars Entry,” Journal of Spacecraft and Rockets, Vol. 57, No. 2, 2020, pp. 319–327. https://doi.org/10.2514/1.A34602 LinkGoogle Scholar[10] Van Driest E. R., “The Problem of Aerodynamic Heating,” Aeronautical Engineering Review, Vol. 15, No. 10, 1956, pp. 26–41. Google Scholar[11] Fay J. A. and Riddell F. R., “Theory of Stagnation Point Heat Transfer in Dissociated Air,” Journal of the Aerospace Sciences, Vol. 25, No. 2, 1958, pp. 73–85. https://doi.org/10.2514/8.7517 LinkGoogle Scholar[12] Scala S. M., A Study of Hypersonic Ablation, Springer, Berlin, 1960, pp. 790–827. https://doi.org/10.1007/978-3-662-39914-9_67 Google Scholar[13] Lees L., “Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Flight Speeds,” Journal of Jet Propulsion, Vol. 26, No. 4, 1956, pp. 259–269. https://doi.org/10.2514/8.6977 LinkGoogle Scholar[14] Detra R. W., Kemp N. H. and Riddell F. R., “Addendum to ‘Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere’,” Journal of Jet Propulsion, Vol. 27, No. 12, 1957, pp. 1256–1257. Google Scholar[15] Sutton K. and Graves R. A., “A General Stagnation-Point Convective Heating Equation for Arbitrary Gas Mixtures,” NASA TR-R-376, 1971. Google Scholar[16] Bushnell D. M., “Scaling: Wind Tunnel to Flight,” Annual Review of Fluid Mechanics, Vol. 38, Jan. 2006, pp. 111–128. https://doi.org/10.1146/annurev.fluid.38.050304.092208 CrossrefGoogle Scholar[17] Simeonides G., “Generalized Reference Enthalpy Formulations and Simulation of Viscous Effects in Hypersonic Flow,” Shock Waves, Vol. 8, No. 3, 1998, pp. 161–172. https://doi.org/10.1007/s001930050109 CrossrefGoogle Scholar[18] Wen C., “Hypervelocity Flow over Spheres,” Ph.D. Dissertation, California Inst. of Technology, Pasadena, CA, 1994. Google Scholar[19] Hollis B. R., “Blunt-Body Entry Vehicle Aerothermodynamics: Transition and Turbulence on the CEV and MSL Configurations,” AIAA Paper 2010-4984, 2010. https://doi.org/10.2514/6.2010-4984 Google Scholar[20] Du T., Chen M. K., Li H. L., Zhang Y. L. and Shen D., “Suitability Analysis on Correlation Relation of Aerothermodynamics Entry Environment for Hypersonic Flying Vehicles,” Journal of Astronautics, Vol. 39, No. 9, 2018, pp. 1039–1046. https://doi.org/10.3873/j.issn.1000-1328.2018.09.012 Google Scholar[21] Holden M. S. and Kolly J. M., “Attachment Line Transition Studies on Swept Cylindrical Leading Edges at Mach Numbers from 10 to 12,” AIAA Paper 1995-2279, 1995. https://doi.org/10.2514/6.1995-2279 LinkGoogle Scholar[22] Bushnell D. M., “Interference Heating on a Swept Cylinder in Region of Intersection with a Wedge at Mach Number 8,” NASA TN-D-3094, 1965. Google Scholar[23] Poll D. I. A., “Development of Intermittent Turbulence on a Swept Attachment Line Including the Effects of Compressibility,” Aeronautical Quarterly, Vol. 34, No. 1, 1983, pp. 1–23. https://doi.org/10.1017/s0001925900009562 CrossrefGoogle Scholar[24] Beckwith I. E. and Gallagher J. J., “Local Heat Transfer and Recovery Temperatures on a Yawed Cylinder at a Mach Number of 4.15 and High Reynolds Numbers,” NASA TR R-104, 1961. Google Scholar[25] Engel C. D., “MINIVER Upgrade for the AVID System Volume 1: LANMIN User’s Manual,” NASA CR-172212, 1983. Google Scholar[26] Sharan N. and Bellan J., “Numerical Aspects for Physically Accurate Direct Numerical Simulations of Turbulent Jets,” AIAA Paper 2019-2011, 2019. https://doi.org/10.2514/6.2019-2011 Google Scholar[27] Zucrow M. J. and Hoffman J. D., Gas Dynamics, Vol. 1, Wiley, New York, 1976, pp. 160–242. Google Scholar[28] Wegener P. P. and Mack L. M., “Condensation in Supersonic and Hypersonic Wind Tunnels,” Advances in Applied Mechanics, Vol. 5, No. C, 1958, pp. 307–447. https://doi.org/10.1016/S0065-2156(08)70022-X Google Scholar[29] Tsien H. S., “Superaerodynamics, Mechanics of Rarefied Gases.” Journal of Aeronautical Sciences, Vol. 13, No. 12, 1946, pp. 653–664. https://doi.org/10.2514/8.11476 LinkGoogle Scholar[30] Borovoi V. Y., Chinilov A. Y., Gusev V. N., Struminskaya I. V., Délery J. and Chanetz B., “Interference Between a Cylindrical Bow Shock and a Plane Oblique Shock,” AIAA Paper 1996-2046, 1996. https://doi.org/10.2514/6.1996-2046 Google Scholar[31] Reijasse P., Bur R. and Chanetz B., “Experimental Analysis of Aerodynamic Interactions Occurring on Hypersonic Spacecraft,” Journal of Spacecraft and Rockets, Vol. 38, No. 2, 2001, pp. 129–135. https://doi.org/10.2514/2.3669 LinkGoogle Scholar[32] Li Z., Gao W., Jiang H. and Yang J., “Unsteady Behaviors of a Hypersonic Inlet Caused by Throttling in Shock Tunnel,” AIAA Journal, Vol. 51, No. 10, 2013, pp. 2485–2492. https://doi.org/10.2514/1.j052384 LinkGoogle Scholar[33] Chen X., Song K., Shen J. and Yi X., “The Aerodynamic and Structural Design of the Moderate Mass Piston Used in a Large Scale Hypersonic Gun Tunnel FD-20a,” Proceedings of the 32nd International Symposium on Shock Waves, Research Publishing, Singapore, 2019, pp. 1201–1207. https://doi.org/10.3850/978-981-11-2730-4_0437-cd Google Scholar[34] Liu M., Han G. and Jiang Z., “Experimental Study on the Evolution of Mode Waves in Laminar Boundary Layer on a Large-Scale Flat Plate,” Physics of Fluids, Vol. 34, No. 1, 2022, Paper 013612. https://doi.org/10.1063/5.0075710 Google Scholar[35] Nowak R. J., Hoiden M. S. and Wieting A. R., “Shock/Shock Interference on a Transpiration Cooled Hemispherical Model,” AIAA Paper 1990-1643, 1990. https://doi.org/10.2514/6.1990-1643 LinkGoogle Scholar[36] Gertsbakh I., Measurement Theory for Engineers, Springer, Berlin, 2003, pp. 88–90. https://doi.org/10.1007/978-3-662-08583-7 Google Scholar[37] Perini L. L., “Compilation and Correlation of Experimental, Hypersonic, Stagnation Point Convective Heating Rates,” Applied Physics Lab., Johns Hopkins Univ. Rept. ANSP-M-4, Silver Spring, MD, 1972. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 61, Number 3March 2023 CrossmarkInformationCopyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesBoundary LayersEnthalpyFlow RegimesFluid DynamicsHeat ConductionHeat TransferIdeal GasThermodynamic PropertiesThermodynamicsThermophysics and Heat TransferVortex DynamicsWind Tunnels KeywordsStagnation PointHypersonic FlowsStatic EnthalpyFreestream Mach NumberWind TunnelsBoundary Layer EquationsWall TemperatureGas ConstantStagnation RegionAcknowledgmentsThis work was supported by the National Natural Science Foundation of China (grant nos. 12172354, 11772325, and 11621202). The authors are very grateful to Jiming Yang for the valuable discussions.PDF Received17 September 2022Accepted13 December 2022Published online3 January 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葱饼完成签到 ,获得积分10
23秒前
852应助亡命天涯的蜂采纳,获得10
58秒前
1分钟前
1分钟前
feijelly完成签到,获得积分10
2分钟前
学术小白完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
亡命天涯的蜂完成签到,获得积分10
3分钟前
不辣的完成签到 ,获得积分10
3分钟前
4分钟前
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
完美世界应助科研通管家采纳,获得30
5分钟前
不去明知山完成签到 ,获得积分10
5分钟前
5分钟前
刘个毛完成签到 ,获得积分10
6分钟前
6分钟前
tamo完成签到,获得积分10
7分钟前
7分钟前
惊蛰发布了新的文献求助10
7分钟前
袁雪蓓完成签到 ,获得积分10
7分钟前
葛力发布了新的文献求助10
8分钟前
8分钟前
高兴曼寒发布了新的文献求助10
8分钟前
8分钟前
AprilLeung完成签到 ,获得积分10
8分钟前
9分钟前
daixan89完成签到 ,获得积分10
9分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
高兴曼寒完成签到,获得积分10
9分钟前
完美世界应助科研通管家采纳,获得30
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
0911wxt发布了新的文献求助10
11分钟前
0911wxt完成签到,获得积分10
11分钟前
12分钟前
12分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376851
求助须知:如何正确求助?哪些是违规求助? 2992962
关于积分的说明 8752834
捐赠科研通 2677311
什么是DOI,文献DOI怎么找? 1466571
科研通“疑难数据库(出版商)”最低求助积分说明 678385
邀请新用户注册赠送积分活动 669930