A novel convolution bi-directional gated recurrent unit neural network for emotion recognition in multichannel electroencephalogram signals

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 脑电图 卷积(计算机科学) 深度学习 情绪识别 熵(时间箭头) 人工神经网络 分类器(UML) 语音识别 心理学 量子力学 精神科 物理
作者
Abgeena Abgeena,Shruti Garg
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (4): 1215-1234 被引量:6
标识
DOI:10.3233/thc-220458
摘要

BACKGROUND: Recognising emotions in humans is a great challenge in the present era and has several applications under affective computing. Deep learning (DL) is found as a successful tool for prediction of human emotions in different modalities. OBJECTIVE: To predict 3D emotions with high accuracy in multichannel physiological signals, i.e. electroencephalogram (EEG). METHODS: A hybrid DL model consisting of convolutional neural network (CNN) and gated recurrent units (GRU) is proposed in this work for emotion recognition in EEG data. CNN has the capability of learning abstract representation, whereas GRU can explore temporal correlation. A bi-directional variation of GRU is used here to learn features in both directions. Discrete and dimensional emotion indices are recognised in two publicly available datasets SEED and DREAMER, respectively. A fused feature of energy and Shannon entropy (𝐸𝑛𝑆𝐸→) and energy and differential entropy (𝐸𝑛𝐷𝐸→) are fed in the proposed classifier to improve the efficiency of the model. RESULTS: The performance of the presented model is measured in terms of average accuracy, which is obtained as 86.9% and 93.9% for SEED and DREAMER datasets, respectively. CONCLUSION: The proposed convolution bi-directional gated recurrent unit neural network (CNN-BiGRU) model outperforms most of the state-of-the-art and competitive hybrid DL models, which indicates the effectiveness of emotion recognition using EEG signals and provides a scientific base for the implementation in human-computer interaction (HCI).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
含羞草发布了新的文献求助10
1秒前
1秒前
fenghuo发布了新的文献求助10
1秒前
msk发布了新的文献求助10
3秒前
Aurora发布了新的文献求助10
3秒前
FairyLeaf发布了新的文献求助30
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
善学以致用应助苏qj采纳,获得10
6秒前
6秒前
领导范儿应助193523采纳,获得10
7秒前
花海完成签到,获得积分10
7秒前
xdlongchem发布了新的文献求助10
8秒前
8秒前
孙欣莹完成签到,获得积分10
8秒前
林韵悠扬发布了新的文献求助10
9秒前
SS完成签到,获得积分10
10秒前
天天快乐应助tigger采纳,获得10
10秒前
Nonsensevege发布了新的文献求助10
11秒前
12秒前
13秒前
bkagyin应助F2022采纳,获得10
13秒前
xdlongchem完成签到,获得积分10
13秒前
ccm应助风声亦寒采纳,获得10
14秒前
17秒前
17秒前
193523发布了新的文献求助10
19秒前
洋葱头完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
于哄哄发布了新的文献求助10
20秒前
FashionBoy应助msk采纳,获得10
21秒前
喜悦发布了新的文献求助10
22秒前
loooz完成签到,获得积分10
22秒前
赵维雪发布了新的文献求助10
23秒前
23秒前
25秒前
思源应助于哄哄采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577420
求助须知:如何正确求助?哪些是违规求助? 4662595
关于积分的说明 14742430
捐赠科研通 4603236
什么是DOI,文献DOI怎么找? 2526219
邀请新用户注册赠送积分活动 1496045
关于科研通互助平台的介绍 1465527