A novel convolution bi-directional gated recurrent unit neural network for emotion recognition in multichannel electroencephalogram signals

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 脑电图 卷积(计算机科学) 深度学习 情绪识别 熵(时间箭头) 人工神经网络 分类器(UML) 语音识别 心理学 量子力学 精神科 物理
作者
Abgeena Abgeena,Shruti Garg
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (4): 1215-1234 被引量:6
标识
DOI:10.3233/thc-220458
摘要

BACKGROUND: Recognising emotions in humans is a great challenge in the present era and has several applications under affective computing. Deep learning (DL) is found as a successful tool for prediction of human emotions in different modalities. OBJECTIVE: To predict 3D emotions with high accuracy in multichannel physiological signals, i.e. electroencephalogram (EEG). METHODS: A hybrid DL model consisting of convolutional neural network (CNN) and gated recurrent units (GRU) is proposed in this work for emotion recognition in EEG data. CNN has the capability of learning abstract representation, whereas GRU can explore temporal correlation. A bi-directional variation of GRU is used here to learn features in both directions. Discrete and dimensional emotion indices are recognised in two publicly available datasets SEED and DREAMER, respectively. A fused feature of energy and Shannon entropy (𝐸𝑛𝑆𝐸→) and energy and differential entropy (𝐸𝑛𝐷𝐸→) are fed in the proposed classifier to improve the efficiency of the model. RESULTS: The performance of the presented model is measured in terms of average accuracy, which is obtained as 86.9% and 93.9% for SEED and DREAMER datasets, respectively. CONCLUSION: The proposed convolution bi-directional gated recurrent unit neural network (CNN-BiGRU) model outperforms most of the state-of-the-art and competitive hybrid DL models, which indicates the effectiveness of emotion recognition using EEG signals and provides a scientific base for the implementation in human-computer interaction (HCI).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逍遥客发布了新的文献求助10
刚刚
刚刚
dejavu发布了新的文献求助10
1秒前
神经哈哈发布了新的文献求助10
1秒前
八乙基环辛四烯完成签到,获得积分10
1秒前
CipherSage应助Willing采纳,获得10
2秒前
陆壹伍615发布了新的文献求助10
2秒前
打打应助陈洋采纳,获得10
2秒前
丘比特应助俏皮沁采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
ww发布了新的文献求助10
3秒前
令狐发布了新的文献求助10
4秒前
zwx发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
yznfly应助ChenYX采纳,获得50
5秒前
顾矜应助ChenYX采纳,获得10
5秒前
完美世界应助ChenYX采纳,获得10
5秒前
XYY完成签到,获得积分10
5秒前
听闻完成签到 ,获得积分10
5秒前
无极微光应助ChenYX采纳,获得20
5秒前
JamesPei应助relax采纳,获得10
5秒前
无极微光应助ChenYX采纳,获得20
5秒前
chenlei完成签到,获得积分10
5秒前
小二郎应助ChenYX采纳,获得10
5秒前
6秒前
6秒前
科研通AI2S应助如意修洁采纳,获得10
6秒前
6秒前
乐乐应助源来凯始玺欢你采纳,获得10
7秒前
8秒前
顾矜应助zyl采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
英勇的冰之完成签到,获得积分20
9秒前
婵婵发布了新的文献求助10
10秒前
Akim应助张瑜采纳,获得10
11秒前
CHAN发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978