A contradiction solving method for complex product conceptual design based on deep learning and technological evolution patterns

特里兹 矛盾 计算机科学 人工智能 环路图 适应性 过程(计算) 转化(遗传学) 概念设计 工业工程 系统工程 工程类 系统动力学 人机交互 生态学 生物化学 哲学 化学 认识论 基因 生物 操作系统
作者
Jiangmin Mao,Zhu Yingdan,Mingda Chen,Gang Chen,Chun Yan,Dong Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101825-101825 被引量:15
标识
DOI:10.1016/j.aei.2022.101825
摘要

Contradictions caused by the various design constraints present increasing challenges to efficiency and innovation in product development. TRIZ provides Inventive Principles (IPs) and Contradiction Matrix that are the most frequently applied in conflict resolution. However, the high-level abstraction and subjective selection of IPs inhibit achieving the transformation process from paradoxical states to physical structures. To fill this gap, a contradiction solving method by integrating deep learning and technological evolution patterns for product conceptual design is proposed, which illustrates the mechanism of contradiction transition from the perspective of system evolution and supplies a systematic and model-based design approach. Firstly, generic engineering parameters are extracted to define the underlying contradictions transformed from critical defects which are found out through function modeling and root-conflict analysis. Then, a fully-connected deep neural network with excellent performance is developed to uncover the non-linear relationships between engineering parameters and evolution patterns. Finally, an evolution tree based on the predicted patterns is constructed to visualize transformation potentials of a technical system and help designers generate innovative specific solutions. In addition, a case study concerning design conflict resolution for beat-up system of three-dimensional tubular weaving machine is used to validate the adaptability and reliability of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高硕发布了新的文献求助10
1秒前
1秒前
脑洞疼应助猪猪猪采纳,获得10
2秒前
哈罗发布了新的文献求助10
2秒前
小鲨鱼完成签到,获得积分10
2秒前
XEZ发布了新的文献求助10
3秒前
上官若男应助www采纳,获得10
3秒前
niudayun给niudayun的求助进行了留言
3秒前
炙热尔阳发布了新的文献求助10
3秒前
3秒前
科研通AI6应助榕俊采纳,获得10
4秒前
CipherSage应助榕俊采纳,获得10
4秒前
斯文败类应助榕俊采纳,获得10
4秒前
Rachel完成签到,获得积分10
4秒前
fei发布了新的文献求助200
4秒前
4秒前
4秒前
4秒前
坚定剑成发布了新的文献求助10
5秒前
思源应助xl采纳,获得10
5秒前
华仔应助bubble采纳,获得10
5秒前
善学以致用应助从容听南采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得20
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
dawnfrf应助科研通管家采纳,获得80
7秒前
情怀应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731