A contradiction solving method for complex product conceptual design based on deep learning and technological evolution patterns

特里兹 矛盾 计算机科学 人工智能 环路图 适应性 过程(计算) 转化(遗传学) 概念设计 工业工程 系统工程 工程类 系统动力学 人机交互 认识论 操作系统 哲学 基因 生物 化学 生物化学 生态学
作者
Jiangmin Mao,Zhu Yingdan,Mingda Chen,Gang Chen,Chun Yan,Dong Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101825-101825 被引量:10
标识
DOI:10.1016/j.aei.2022.101825
摘要

Contradictions caused by the various design constraints present increasing challenges to efficiency and innovation in product development. TRIZ provides Inventive Principles (IPs) and Contradiction Matrix that are the most frequently applied in conflict resolution. However, the high-level abstraction and subjective selection of IPs inhibit achieving the transformation process from paradoxical states to physical structures. To fill this gap, a contradiction solving method by integrating deep learning and technological evolution patterns for product conceptual design is proposed, which illustrates the mechanism of contradiction transition from the perspective of system evolution and supplies a systematic and model-based design approach. Firstly, generic engineering parameters are extracted to define the underlying contradictions transformed from critical defects which are found out through function modeling and root-conflict analysis. Then, a fully-connected deep neural network with excellent performance is developed to uncover the non-linear relationships between engineering parameters and evolution patterns. Finally, an evolution tree based on the predicted patterns is constructed to visualize transformation potentials of a technical system and help designers generate innovative specific solutions. In addition, a case study concerning design conflict resolution for beat-up system of three-dimensional tubular weaving machine is used to validate the adaptability and reliability of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sober完成签到,获得积分10
刚刚
刚刚
mmknnk完成签到,获得积分20
刚刚
cc2064完成签到 ,获得积分10
刚刚
调皮冰旋发布了新的文献求助10
1秒前
西哈哈完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
Orange应助幸福胡萝卜采纳,获得10
1秒前
SHDeathlock完成签到,获得积分10
2秒前
习习发布了新的文献求助100
3秒前
Jolene66完成签到,获得积分10
3秒前
研友_8RlQ2n发布了新的文献求助10
3秒前
4秒前
852应助Pangsj采纳,获得10
4秒前
Song完成签到 ,获得积分10
4秒前
4秒前
5秒前
大胆夜绿发布了新的文献求助10
5秒前
Dr终年完成签到,获得积分10
5秒前
katharsis完成签到,获得积分10
5秒前
Ricardo发布了新的文献求助10
6秒前
歪歪象发布了新的文献求助10
6秒前
zeno123456完成签到,获得积分10
6秒前
陈某某发布了新的文献求助10
6秒前
7秒前
he完成签到,获得积分10
7秒前
7秒前
科研小民工应助忍冬半夏采纳,获得30
7秒前
小马甲应助年华采纳,获得10
7秒前
7秒前
CipherSage应助开放的听枫采纳,获得10
7秒前
Never stall发布了新的文献求助10
7秒前
7秒前
Jolene66发布了新的文献求助10
8秒前
zy完成签到,获得积分10
8秒前
Adzuki0812完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678