A contradiction solving method for complex product conceptual design based on deep learning and technological evolution patterns

特里兹 矛盾 计算机科学 人工智能 环路图 适应性 过程(计算) 转化(遗传学) 概念设计 工业工程 系统工程 工程类 系统动力学 人机交互 认识论 操作系统 哲学 基因 生物 化学 生物化学 生态学
作者
Jiangmin Mao,Zhu Yingdan,Mingda Chen,Gang Chen,Chun Yan,Dong Liu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101825-101825 被引量:10
标识
DOI:10.1016/j.aei.2022.101825
摘要

Contradictions caused by the various design constraints present increasing challenges to efficiency and innovation in product development. TRIZ provides Inventive Principles (IPs) and Contradiction Matrix that are the most frequently applied in conflict resolution. However, the high-level abstraction and subjective selection of IPs inhibit achieving the transformation process from paradoxical states to physical structures. To fill this gap, a contradiction solving method by integrating deep learning and technological evolution patterns for product conceptual design is proposed, which illustrates the mechanism of contradiction transition from the perspective of system evolution and supplies a systematic and model-based design approach. Firstly, generic engineering parameters are extracted to define the underlying contradictions transformed from critical defects which are found out through function modeling and root-conflict analysis. Then, a fully-connected deep neural network with excellent performance is developed to uncover the non-linear relationships between engineering parameters and evolution patterns. Finally, an evolution tree based on the predicted patterns is constructed to visualize transformation potentials of a technical system and help designers generate innovative specific solutions. In addition, a case study concerning design conflict resolution for beat-up system of three-dimensional tubular weaving machine is used to validate the adaptability and reliability of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王菲发布了新的文献求助10
刚刚
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
喜悦采枫发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
LEMONS应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
灿灿应助科研通管家采纳,获得10
2秒前
怎么说应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
LEMONS应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Y先生应助科研通管家采纳,获得20
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
怎么说应助科研通管家采纳,获得10
3秒前
wu8577应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
格物致知发布了新的文献求助30
3秒前
4秒前
今后应助Nancy采纳,获得10
4秒前
4秒前
leichun完成签到,获得积分20
4秒前
大气海露发布了新的文献求助10
5秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352