Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California

地下水 含水层 缩小尺度 水文学(农业) 环境科学 气候变化 地质学 海洋学 岩土工程
作者
Vibhor Agarwal,Orhan Akyılmaz,C. K. Shum,Wei Feng,Ting Yang,Ehsan Forootan,Tajdarul H. Syed,Umesh K. Haritashya,Metehan Uz
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:865: 161138-161138 被引量:18
标识
DOI:10.1016/j.scitotenv.2022.161138
摘要

California's Central Valley, one of the most agriculturally productive regions, is also one of the most stressed aquifers in the world due to anthropogenic groundwater over-extraction primarily for irrigation. Groundwater depletion is further exacerbated by climate-driven droughts. Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry has demonstrated the feasibility of quantifying global groundwater storage changes at uniform monthly sampling, though at a coarse resolution and is thus impractical for effective water resources management. Here, we employ the Random Forest machine learning algorithm to establish empirical relationships between GRACE-derived groundwater storage and in situ groundwater level variations over the Central Valley during 2002-2016 and achieved spatial downscaling of GRACE-observed groundwater storage changes from a few hundred km to 5 km. Validations of our modeled groundwater level with in situ groundwater level indicate excellent Nash-Sutcliffe Efficiency coefficients ranging from 0.94 to 0.97. In addition, the secular components of modeled groundwater show good agreements with those of vertical displacements observed by GPS, and CryoSat-2 radar altimetry measurements and is perfectly consistent with findings from previous studies. Our estimated groundwater loss is about 30 km3 from 2002 to 2016, which also agrees well with previous studies in Central Valley. We find the maximum groundwater storage loss rates of -5.7 ± 1.2 km3 yr-1 and -9.8 ± 1.7 km3 yr-1 occurred during the extended drought periods of January 2007-December 2009, and October 2011-September 2015, respectively while Central Valley also experienced groundwater recharges during prolonged flood episodes. The 5-km resolution Central Valley-wide groundwater storage trends reveal that groundwater depletion occurs mostly in southern San Joaquin Valley collocated with severe land subsidence due to aquifer compaction from excessive groundwater over withdrawal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助zzt采纳,获得10
1秒前
zhang狗子完成签到,获得积分20
1秒前
xiaowanzi完成签到,获得积分10
2秒前
douny发布了新的文献求助10
2秒前
3秒前
布鲁鲁完成签到,获得积分10
3秒前
Shaw完成签到,获得积分10
3秒前
雁夜完成签到,获得积分10
4秒前
yn关闭了yn文献求助
4秒前
4秒前
思路三完成签到,获得积分20
4秒前
5秒前
5秒前
6秒前
diode完成签到,获得积分10
6秒前
7秒前
Hello应助Xzmmmm采纳,获得10
7秒前
JamesPei应助笨笨的凡梅采纳,获得10
7秒前
8秒前
8秒前
优美的谷槐完成签到,获得积分10
9秒前
yufanhui给复杂小松鼠的求助进行了留言
9秒前
9秒前
www发布了新的文献求助10
9秒前
小姚在忙完成签到,获得积分10
9秒前
骆驼林子完成签到,获得积分10
10秒前
10秒前
没头脑姑娘完成签到,获得积分20
10秒前
晚心发布了新的文献求助10
10秒前
11秒前
11秒前
彭于彦祖应助不下雨采纳,获得30
12秒前
搞怪白秋完成签到,获得积分10
12秒前
xiax03发布了新的文献求助10
12秒前
12秒前
思源应助落后的山水采纳,获得10
12秒前
梧桐树下有只猫完成签到,获得积分10
12秒前
顾矜应助yyw采纳,获得10
13秒前
sy123完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156402
求助须知:如何正确求助?哪些是违规求助? 2807851
关于积分的说明 7874906
捐赠科研通 2466107
什么是DOI,文献DOI怎么找? 1312627
科研通“疑难数据库(出版商)”最低求助积分说明 630194
版权声明 601912