A Simple but Effective Method for Balancing Detection and Re-Identification in Multi-Object Tracking

计算机科学 判别式 任务(项目管理) 目标检测 人工智能 机器学习 推论 过程(计算) 嵌入 特征(语言学) 任务分析 数据挖掘 模式识别(心理学) 语言学 哲学 管理 经济 操作系统
作者
Pan Yang,Xiong Luo,Jiankun Sun
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 7456-7468 被引量:10
标识
DOI:10.1109/tmm.2022.3222614
摘要

In recent years, joint detection and embedding (JDE) has become the research focus in multi-object tracking (MOT) due to its fast inference speed. JDE models are designed and widely utilized to train the detection task and the re-identification (Re-ID) task jointly. However, there exists a severe issue overlooked by previous JDE models, i.e., the detection task requires category-level features but the Re-ID task requires instance-level features. This could lead to feature conflict, which would hurt the performance of JDE models. Furthermore, inaccurate detection results can degrade the final tracking accuracy even when discriminative Re-ID features are provided. In this article, we propose a new balancing method for training JDE models, which monitors the training process of the detection task and adjusts the weights of the detection task and Re-ID task in the training phase. Our proposed balancing method ensures a well-trained detection model and a good trade-off between the detection task and Re-ID task. Comprehensive experiments on two public MOT benchmarks demonstrate the effectiveness and superiority of our proposed balancing method. In particular, our proposed balancing method could achieve new state-of-the-art results on MOT challenges without additional training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mottri完成签到 ,获得积分10
1秒前
呐呐完成签到,获得积分10
2秒前
2秒前
4秒前
林风发布了新的文献求助10
6秒前
7秒前
7秒前
胡桃桃完成签到,获得积分20
8秒前
Ava应助wonhui采纳,获得10
8秒前
8秒前
8秒前
8秒前
代代完成签到 ,获得积分10
9秒前
9秒前
lalala发布了新的文献求助10
11秒前
YangMengJing_发布了新的文献求助10
11秒前
lia0702发布了新的文献求助10
11秒前
奇奇淼完成签到 ,获得积分10
13秒前
13秒前
Ya发布了新的文献求助10
13秒前
张子扬发布了新的文献求助10
14秒前
15秒前
李爱国应助yyy采纳,获得10
15秒前
15秒前
ECHO完成签到,获得积分10
16秒前
感动的梦柏完成签到,获得积分10
16秒前
16秒前
16秒前
长情的涔完成签到 ,获得积分10
16秒前
欢呼的冰蝶完成签到,获得积分10
17秒前
深情安青应助hongjie_w采纳,获得10
17秒前
时尚赛君发布了新的文献求助10
18秒前
玖川完成签到,获得积分10
18秒前
18秒前
领导范儿应助YangMengJing_采纳,获得10
20秒前
整齐硬币发布了新的文献求助10
20秒前
20秒前
救救scori发布了新的文献求助10
21秒前
pluto应助胡桃桃采纳,获得10
21秒前
情怀应助胡桃桃采纳,获得10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265107
求助须知:如何正确求助?哪些是违规求助? 2905078
关于积分的说明 8332507
捐赠科研通 2575523
什么是DOI,文献DOI怎么找? 1399840
科研通“疑难数据库(出版商)”最低求助积分说明 654584
邀请新用户注册赠送积分活动 633396