A comparative study on the most effective machine learning model for blast loading prediction: From GBDT to Transformer

机器学习 计算机科学 人工神经网络 人工智能 变压器 极限学习机 感知器 预测建模 随机森林 工程类 电压 电气工程
作者
Qilin Li,Yang Wang,Yanda Shao,Ling Li,Hong Hao
出处
期刊:Engineering Structures [Elsevier]
卷期号:276: 115310-115310 被引量:5
标识
DOI:10.1016/j.engstruct.2022.115310
摘要

In this paper, we present a rigorous comparative study to assess and identify the most effective machine learning model for blast loading prediction. Blast loads are known to produce catastrophic effects including structural collapse and personnel fatality. Accurate and efficient prediction of these extreme loads using empirical methods and numerical solvers remains a challenging problem. Machine learning provides a promising alternative solution, which has been increasingly used in various engineering applications. However, there is seldom any analysis or justification of the selection of machine learning method that would lead to the best performance for such applications. For example, most existing machine learning-based approaches for blast loading prediction utilise the classic multi-layer perceptron (MLP) network with no justifications of their suitability and efficiency nor attempts of leveraging other state-of-the-art neural network architectures. In this study, four well-known machine learning models, including one ensemble tree method and three neural networks of different types, are investigated to demonstrate the effectiveness of different machine learning methods for blast loading prediction. It is showcased using BLEVE (boiling liquid expanding vapour explosion) pressure prediction that the Transformer model achieves the best performance, reaching a relative error of 3.5% and R2 0.997 that outperforms the existing MLP approach (relative error 6.0%, R2 0.985) with a clear margin. This study shows that the Transformer network is an effective tool for prediction of blast loading from BLEVE as well as other explosion sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqesk发布了新的文献求助10
1秒前
阿治完成签到 ,获得积分10
2秒前
3秒前
田様应助qqesk采纳,获得10
4秒前
安古妮稀发布了新的文献求助10
8秒前
饼大王完成签到,获得积分10
8秒前
忘的澜完成签到,获得积分10
9秒前
10秒前
12秒前
李大姐完成签到,获得积分20
12秒前
13秒前
科研通AI2S应助gaobowang采纳,获得10
13秒前
14秒前
科研通AI2S应助国家栋梁采纳,获得10
15秒前
刚刚好完成签到,获得积分20
15秒前
16秒前
saveMA发布了新的文献求助10
16秒前
昏睡的半鬼完成签到 ,获得积分10
18秒前
帝蒼完成签到,获得积分10
18秒前
Zxc发布了新的文献求助10
19秒前
刚刚好发布了新的文献求助10
20秒前
22秒前
萧布完成签到,获得积分10
26秒前
麻薯头头发布了新的文献求助10
28秒前
saveMA完成签到,获得积分10
28秒前
29秒前
一石二鸟应助lysixsixsix采纳,获得10
30秒前
31秒前
小熊完成签到,获得积分10
33秒前
嗯哼发布了新的文献求助10
34秒前
张瑞雪发布了新的文献求助10
34秒前
34秒前
左囧发布了新的文献求助10
40秒前
lysixsixsix完成签到,获得积分10
42秒前
44秒前
buzhidao完成签到,获得积分10
46秒前
传奇3应助面条采纳,获得10
47秒前
48秒前
寒冷海云完成签到,获得积分10
49秒前
养个小猪咪完成签到,获得积分20
53秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043