材料科学
碳纳米管
纳米技术
墨水池
硅酮
弹性体
制作
导电体
聚二甲基硅氧烷
复合数
加热元件
电子皮肤
导电油墨
3D打印
柔性电子器件
复合材料
替代医学
病理
图层(电子)
医学
薄板电阻
作者
Andy Shar,Phillip Glass,Sung Hyun Park,Daeha Joung
标识
DOI:10.1002/adfm.202211079
摘要
Abstract 3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one‐part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)‐silicone composite is developed and thoroughly characterized. The one‐part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self‐supporting and high‐aspect‐ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT‐silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient‐specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI