Railway accident causation analysis: Current approaches, challenges and potential solutions

因果关系 事故分析 背景(考古学) 风险分析(工程) 事故(哲学) 计算机科学 数据科学 毒物控制 运输工程 法律工程学 工程类 业务 医学 政治学 医疗急救 古生物学 哲学 认识论 法学 生物
作者
Wei-Ting Hong,Geoffrey Clifton,John D. Nelson
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:186: 107049-107049 被引量:9
标识
DOI:10.1016/j.aap.2023.107049
摘要

Railway accident causation analysis is fundamental to understanding the nature of railway safety. Although a considerable number of prior studies have investigated this context, many of them suffer from the need to deal with a large amount of textual data given that most railway safety-related information is recorded and stored in the form of text. To gain a better understanding of the limitations imposed by overreliance on textual analysis, a scoping review of the academic literature on how railway accident causation analysis is addressed has been conducted. The results confirm the high frequency of using textual data, a single case study, and in-depth analysis frameworks. While the value of exploring causational factors is clear, the high level of human intervention and the labour-intensive analysis processes based on a large volume of textual data hinder researchers from understanding the complex nature of the rail safety system. Recently, growing attention has been given to the application of Natural Language Processing (NLP) to aid the practice of analysing a large corpus of textual data, but only limited studies to date in railway safety use such techniques and none address railway accident causation analysis. To fill this gap, a supplementary review is conducted to identify opportunities, challenges, boundaries and limitations in the application of NLP approaches to railway accident causation analysis. Findings indicate that novel techniques using off-the-shelf tools have strong potential to overcome the limitations of overreliance on manual analysis in practice and theory, but the absence of shared railway safety-related benchmark corpora restricts implementation. This study sheds light on a new approach to railway accident causation analysis and clarifies future applicable utilisations for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲初雪完成签到,获得积分10
刚刚
cetomacrogol完成签到,获得积分10
刚刚
无奈的萝发布了新的文献求助10
1秒前
xiaozhao完成签到 ,获得积分10
1秒前
谷飞飞完成签到,获得积分10
1秒前
科研通AI2S应助木染采纳,获得10
2秒前
SciGPT应助十三采纳,获得10
2秒前
现实的书芹完成签到,获得积分10
3秒前
碗千岁完成签到,获得积分10
3秒前
无敌幸运儿完成签到 ,获得积分10
3秒前
岛L发布了新的文献求助10
4秒前
papa完成签到,获得积分10
4秒前
4秒前
乐正夜白发布了新的文献求助10
5秒前
6秒前
nater4ver完成签到,获得积分10
6秒前
Zxx完成签到,获得积分10
7秒前
7秒前
猴王给猴王的求助进行了留言
8秒前
yyymmma应助刻苦冰颜采纳,获得10
8秒前
9秒前
火星上盼山完成签到 ,获得积分10
9秒前
iAlvinz完成签到,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
10秒前
诗瑜完成签到,获得积分10
11秒前
大气的山彤完成签到,获得积分10
11秒前
wrahb完成签到,获得积分10
11秒前
二三发布了新的文献求助10
12秒前
等你 下课完成签到,获得积分10
12秒前
端庄幻桃完成签到 ,获得积分10
12秒前
曲初雪发布了新的文献求助30
12秒前
科研通AI2S应助longtengfei采纳,获得10
13秒前
nater3ver完成签到,获得积分10
13秒前
DyLan完成签到,获得积分10
13秒前
13秒前
领导范儿应助伊yan采纳,获得10
13秒前
柚子发布了新的文献求助10
15秒前
15秒前
十三发布了新的文献求助10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257305
求助须知:如何正确求助?哪些是违规求助? 2899227
关于积分的说明 8304469
捐赠科研通 2568509
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630703