An agile, data‐driven approach for target selection in rTMS therapy for anxiety symptoms: Proof of concept and preliminary data for two novel targets

概念证明 焦虑 敏捷软件开发 计算机科学 选择(遗传算法) 心理学 数据科学 人工智能 机器学习 精神科 软件工程 操作系统
作者
Isabella M. Young,Hugh M. Taylor,Peter J. Nicholas,Alana Mackenzie,Onur Tanglay,Nicholas B. Dadario,Karol Osipowicz,Ethan Davis,Stéphane Doyen,Charles Teo,Michael E. Sughrue
出处
期刊:Brain and behavior [Wiley]
卷期号:13 (5) 被引量:14
标识
DOI:10.1002/brb3.2914
摘要

Abstract Introduction Data‐driven approaches to transcranial magnetic stimulation (TMS) might yield more consistent and symptom‐specific results based on individualized functional connectivity analyses compared to previous traditional approaches due to more precise targeting. We provide a proof of concept for an agile target selection paradigm based on using connectomic methods that can be used to detect patient‐specific abnormal functional connectivity, guide treatment aimed at the most abnormal regions, and optimize the rapid development of new hypotheses for future study. Methods We used the resting‐state functional MRI data of 28 patients with medically refractory generalized anxiety disorder to perform agile target selection based on abnormal functional connectivity patterns between the Default Mode Network (DMN) and Central Executive Network (CEN). The most abnormal areas of connectivity within these regions were selected for subsequent targeted TMS treatment by a machine learning based on an anomalous functional connectivity detection matrix. Areas with mostly hyperconnectivity were stimulated with continuous theta burst stimulation and the converse with intermittent theta burst stimulation. An image‐guided accelerated theta burst stimulation paradigm was used for treatment. Results Areas 8Av and PGs demonstrated consistent abnormalities, particularly in the left hemisphere. Significant improvements were demonstrated in anxiety symptoms, and few, minor complications were reported (fatigue ( n = 2) and headache ( n = 1)). Conclusions Our study suggests that a left‐lateralized DMN is likely the primary functional network disturbed in anxiety‐related disorders, which can be improved by identifying and targeting abnormal regions with a rapid, data‐driven, agile aTBS treatment on an individualized basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深年完成签到,获得积分10
1秒前
求知若渴完成签到,获得积分0
1秒前
所所应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
一团小煤球完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
卡乐瑞咩吹可完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
苦咖啡行僧完成签到 ,获得积分10
2秒前
鹤鸣完成签到,获得积分10
3秒前
守望阳光1完成签到,获得积分10
3秒前
正直天空发布了新的文献求助10
3秒前
5秒前
YU发布了新的文献求助10
5秒前
大方元风完成签到 ,获得积分10
5秒前
隐形曼青应助自觉寒梦采纳,获得10
6秒前
ntxlks完成签到,获得积分10
6秒前
祝雲完成签到,获得积分10
6秒前
Spice完成签到 ,获得积分10
7秒前
John完成签到,获得积分20
7秒前
高高诗柳发布了新的文献求助10
8秒前
8秒前
江舟添盛望完成签到 ,获得积分10
10秒前
10秒前
晶晶发布了新的文献求助10
11秒前
大气灵枫发布了新的文献求助10
11秒前
不安的硬币应助DrW采纳,获得10
12秒前
yuanletong完成签到 ,获得积分10
12秒前
趁微风不躁完成签到,获得积分10
13秒前
小灰灰完成签到 ,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029