亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An agile, data‐driven approach for target selection in rTMS therapy for anxiety symptoms: Proof of concept and preliminary data for two novel targets

概念证明 焦虑 敏捷软件开发 计算机科学 选择(遗传算法) 心理学 数据科学 人工智能 机器学习 精神科 软件工程 操作系统
作者
Isabella M. Young,Hugh M. Taylor,Peter J. Nicholas,Alana Mackenzie,Onur Tanglay,Nicholas B. Dadario,Karol Osipowicz,Ethan Davis,Stéphane Doyen,Charles Teo,Michael E. Sughrue
出处
期刊:Brain and behavior [Wiley]
卷期号:13 (5) 被引量:14
标识
DOI:10.1002/brb3.2914
摘要

Abstract Introduction Data‐driven approaches to transcranial magnetic stimulation (TMS) might yield more consistent and symptom‐specific results based on individualized functional connectivity analyses compared to previous traditional approaches due to more precise targeting. We provide a proof of concept for an agile target selection paradigm based on using connectomic methods that can be used to detect patient‐specific abnormal functional connectivity, guide treatment aimed at the most abnormal regions, and optimize the rapid development of new hypotheses for future study. Methods We used the resting‐state functional MRI data of 28 patients with medically refractory generalized anxiety disorder to perform agile target selection based on abnormal functional connectivity patterns between the Default Mode Network (DMN) and Central Executive Network (CEN). The most abnormal areas of connectivity within these regions were selected for subsequent targeted TMS treatment by a machine learning based on an anomalous functional connectivity detection matrix. Areas with mostly hyperconnectivity were stimulated with continuous theta burst stimulation and the converse with intermittent theta burst stimulation. An image‐guided accelerated theta burst stimulation paradigm was used for treatment. Results Areas 8Av and PGs demonstrated consistent abnormalities, particularly in the left hemisphere. Significant improvements were demonstrated in anxiety symptoms, and few, minor complications were reported (fatigue ( n = 2) and headache ( n = 1)). Conclusions Our study suggests that a left‐lateralized DMN is likely the primary functional network disturbed in anxiety‐related disorders, which can be improved by identifying and targeting abnormal regions with a rapid, data‐driven, agile aTBS treatment on an individualized basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助WRX采纳,获得10
4秒前
冉亦完成签到,获得积分10
12秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
无花果应助科研圈外人采纳,获得30
34秒前
35秒前
39秒前
46秒前
51秒前
科研通AI5应助lvchenhang采纳,获得10
1分钟前
归尘发布了新的文献求助10
1分钟前
1分钟前
Ava应助Candy采纳,获得10
1分钟前
1分钟前
cheney完成签到 ,获得积分10
1分钟前
Ava应助Danielwill采纳,获得10
1分钟前
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
SciGPT应助一木采纳,获得10
2分钟前
2分钟前
2分钟前
明天完成签到,获得积分10
2分钟前
2分钟前
Danielwill发布了新的文献求助10
2分钟前
一木发布了新的文献求助10
2分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助Danielwill采纳,获得10
3分钟前
3分钟前
lvchenhang发布了新的文献求助10
3分钟前
drughunter009完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
隐形曼青应助lvchenhang采纳,获得10
3分钟前
Danielwill发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983737
求助须知:如何正确求助?哪些是违规求助? 4234884
关于积分的说明 13189513
捐赠科研通 4027292
什么是DOI,文献DOI怎么找? 2203097
邀请新用户注册赠送积分活动 1215330
关于科研通互助平台的介绍 1132501