An agile, data‐driven approach for target selection in rTMS therapy for anxiety symptoms: Proof of concept and preliminary data for two novel targets

概念证明 焦虑 敏捷软件开发 计算机科学 选择(遗传算法) 心理学 数据科学 人工智能 机器学习 精神科 软件工程 操作系统
作者
Isabella M. Young,Hugh M. Taylor,Peter J. Nicholas,Alana Mackenzie,Onur Tanglay,Nicholas B. Dadario,Karol Osipowicz,Ethan Davis,Stéphane Doyen,Charles Teo,Michael E. Sughrue
出处
期刊:Brain and behavior [Wiley]
卷期号:13 (5) 被引量:6
标识
DOI:10.1002/brb3.2914
摘要

Abstract Introduction Data‐driven approaches to transcranial magnetic stimulation (TMS) might yield more consistent and symptom‐specific results based on individualized functional connectivity analyses compared to previous traditional approaches due to more precise targeting. We provide a proof of concept for an agile target selection paradigm based on using connectomic methods that can be used to detect patient‐specific abnormal functional connectivity, guide treatment aimed at the most abnormal regions, and optimize the rapid development of new hypotheses for future study. Methods We used the resting‐state functional MRI data of 28 patients with medically refractory generalized anxiety disorder to perform agile target selection based on abnormal functional connectivity patterns between the Default Mode Network (DMN) and Central Executive Network (CEN). The most abnormal areas of connectivity within these regions were selected for subsequent targeted TMS treatment by a machine learning based on an anomalous functional connectivity detection matrix. Areas with mostly hyperconnectivity were stimulated with continuous theta burst stimulation and the converse with intermittent theta burst stimulation. An image‐guided accelerated theta burst stimulation paradigm was used for treatment. Results Areas 8Av and PGs demonstrated consistent abnormalities, particularly in the left hemisphere. Significant improvements were demonstrated in anxiety symptoms, and few, minor complications were reported (fatigue ( n = 2) and headache ( n = 1)). Conclusions Our study suggests that a left‐lateralized DMN is likely the primary functional network disturbed in anxiety‐related disorders, which can be improved by identifying and targeting abnormal regions with a rapid, data‐driven, agile aTBS treatment on an individualized basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
WTT完成签到,获得积分10
1秒前
等待八宝粥完成签到,获得积分10
1秒前
洁净山灵完成签到,获得积分20
1秒前
大白发布了新的文献求助10
2秒前
感动语蝶发布了新的文献求助10
2秒前
文鞅完成签到 ,获得积分10
2秒前
晏晏完成签到 ,获得积分10
2秒前
醉熏的伊发布了新的文献求助10
2秒前
好纠结完成签到,获得积分10
2秒前
3秒前
火星上的秋天完成签到,获得积分10
3秒前
酷波er应助22采纳,获得10
3秒前
chy完成签到,获得积分10
4秒前
4秒前
完美的天空应助晏晏采纳,获得30
6秒前
FashionBoy应助玄音采纳,获得10
7秒前
chy发布了新的文献求助10
7秒前
CX发布了新的文献求助10
7秒前
感人的心发布了新的文献求助10
8秒前
许安华完成签到,获得积分10
8秒前
大傻完成签到,获得积分10
8秒前
科研通AI2S应助洁净山灵采纳,获得10
8秒前
9秒前
依檬a完成签到 ,获得积分20
9秒前
qingwusummer发布了新的文献求助10
9秒前
烟花应助糖醋可乐采纳,获得10
9秒前
刘兴龙发布了新的文献求助10
10秒前
雪sung完成签到,获得积分10
10秒前
KKIII发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
11秒前
11秒前
等待泥猴桃完成签到,获得积分10
12秒前
深情安青应助lvlv采纳,获得10
12秒前
12秒前
感人的心完成签到,获得积分20
13秒前
14秒前
lllyq完成签到,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847