Territorial spatial vulnerability assessment based on PSO-BP neural network: A case study in Shenzhen, China

脆弱性(计算) 脆弱性评估 地理 环境资源管理 空间规划 中国 计算机科学 环境规划 环境科学 计算机安全 心理弹性 心理学 考古 心理治疗师
作者
Chenhong Xia,Guofang Zhai
出处
期刊:Ecological Informatics [Elsevier]
卷期号:75: 102088-102088 被引量:11
标识
DOI:10.1016/j.ecoinf.2023.102088
摘要

Studies on vulnerability, a fairly new research paradigm inspired by global environmental change, are expanding to support scientific decision-making for developing sustainable, resilient territorial space at the regional level. The goal of this research is to reveal the vulnerability of a human-environment coupled system and its interaction mechanisms amidst a changing environment. This study started with the vulnerability scoping diagram (VSD) conceptual model and built up a research framework of territorial spatial vulnerability according to the three structural elements of ecological protection, agricultural production and urban construction. Following the requirements for intelligent computing, we introduced particle swarm optimization and BP neural network learning algorithms to evaluate the vulnerability of Shenzhen's territory. We also introduced flow cytometry to analyze the mechanism of Shenzhen's territorial spatial vulnerability driven by human and natural forces. The results showed that the territorial spatial vulnerability of Shenzhen was low under various functional orientations. Among them, ecological protection-oriented territorial spatial vulnerability was high in the west and low in the east and followed an inverted U-shaped trend in the north-south direction. Agricultural production-oriented territorial spatial vulnerability was high in the east and low in the west, high in the north and low in the south. Urban construction-oriented territorial spatial vulnerability was high in the west and low in the east, high in the north and low in the south. Under the complex orientation of the gigantic human-environment coupled system, the vulnerability of territory was symmetrical and balanced in the north-south direction and fluctuated with an overall declining trend in the east-west direction. In vulnerability, ecological protection, agricultural production and urban construction systems independently accounted for 35.642%, 38.209%, and 26.149% of the territorial spatial vulnerability, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CXSCXD完成签到,获得积分10
2秒前
执着的烨华完成签到 ,获得积分10
4秒前
5秒前
lili完成签到,获得积分10
5秒前
从容羽毛完成签到,获得积分10
7秒前
受伤听露完成签到 ,获得积分10
7秒前
8秒前
Bin_Liu发布了新的文献求助10
8秒前
Xiaoxiao应助彤彤采纳,获得10
10秒前
浮游应助细腻的歌曲采纳,获得10
11秒前
胡萝卜发布了新的文献求助10
12秒前
袁建波完成签到 ,获得积分10
12秒前
咸鱼完成签到,获得积分20
12秒前
友好伟诚应助fzh采纳,获得10
13秒前
DIAPTERA完成签到,获得积分10
13秒前
孙久惠jiuh完成签到,获得积分10
14秒前
xxfsx应助lslslslsllss采纳,获得20
15秒前
15秒前
15秒前
害羞的凝竹完成签到 ,获得积分10
15秒前
雷小牛完成签到 ,获得积分10
17秒前
小二郎应助胡萝卜采纳,获得10
17秒前
17秒前
孙久惠jiuh发布了新的文献求助20
18秒前
清荔发布了新的文献求助10
18秒前
情怀应助dulu采纳,获得20
18秒前
19秒前
20秒前
KKKZ完成签到,获得积分10
22秒前
LL发布了新的文献求助10
23秒前
我是老大应助Kazeal采纳,获得10
23秒前
luck发布了新的文献求助30
24秒前
27秒前
哈基米德应助dongxuzhen采纳,获得20
27秒前
27秒前
葡萄子完成签到 ,获得积分10
28秒前
1256完成签到,获得积分20
29秒前
航佐完成签到 ,获得积分10
29秒前
liliAnh完成签到 ,获得积分10
37秒前
37秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380088
求助须知:如何正确求助?哪些是违规求助? 4504158
关于积分的说明 14017420
捐赠科研通 4413027
什么是DOI,文献DOI怎么找? 2424054
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394628