The development of machine learning-based remaining useful life prediction for lithium-ion batteries

电池(电) 电池容量 可靠性工程 锂离子电池 计算机科学 机器学习 人工智能 工程类 功率(物理) 量子力学 物理
作者
Xingjun Li,Dan Yu,Søren Byg Vilsen,Store Daniel Ioan
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:82: 103-121 被引量:112
标识
DOI:10.1016/j.jechem.2023.03.026
摘要

Lithium-ion batteries are the most widely used energy storage devices, for which the accurate prediction of the remaining useful life (RUL) is crucial to their reliable operation and accident prevention. This work thoroughly investigates the developmental trend of RUL prediction with machine learning (ML) algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions. The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper. The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers. Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented. The research core of common ML algorithms is given first time in a uniform format in chronological order. The algorithms are also compared from aspects of accuracy and characteristics comprehensively, and the novel and general improvement directions or opportunities including improvement in early prediction, local regeneration modeling, physical information fusion, generalized transfer learning, and hardware implementation are further outlooked. Finally, the methods of battery lifetime extension are summarized, and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked. Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future. This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狄狄发布了新的文献求助10
刚刚
科研通AI5应助Duke采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
香蕉海白完成签到 ,获得积分10
4秒前
烟花应助sun采纳,获得10
4秒前
5秒前
5秒前
热电CAT发布了新的文献求助10
6秒前
可爱的函函应助wzg666采纳,获得10
7秒前
junjun发布了新的文献求助10
7秒前
qian发布了新的文献求助10
8秒前
8秒前
研友_燥蝉发布了新的文献求助10
9秒前
11秒前
充电宝应助肉肉采纳,获得10
11秒前
樊璐发布了新的文献求助20
12秒前
阿拉佳完成签到,获得积分10
12秒前
qian完成签到,获得积分20
15秒前
15秒前
Hello应助研友_燥蝉采纳,获得10
16秒前
热电CAT完成签到,获得积分10
18秒前
19秒前
娇气的雁兰完成签到,获得积分10
19秒前
19秒前
Jasper应助超级的一斩采纳,获得10
19秒前
超帅亦绿发布了新的文献求助10
20秒前
幽默的丹雪完成签到,获得积分10
20秒前
天下无马完成签到 ,获得积分10
20秒前
22秒前
wzg666发布了新的文献求助10
23秒前
24秒前
24秒前
科研通AI6应助Wu采纳,获得10
26秒前
26秒前
nianxunxi完成签到,获得积分10
27秒前
哟哟小姚妹妹完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538239
求助须知:如何正确求助?哪些是违规求助? 3972869
关于积分的说明 12307112
捐赠科研通 3639695
什么是DOI,文献DOI怎么找? 2004020
邀请新用户注册赠送积分活动 1039471
科研通“疑难数据库(出版商)”最低求助积分说明 928776