已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The development of machine learning-based remaining useful life prediction for lithium-ion batteries

电池(电) 电池容量 可靠性工程 锂离子电池 计算机科学 机器学习 人工智能 工程类 功率(物理) 量子力学 物理
作者
Xingjun Li,Dan Yu,Søren Byg Vilsen,Store Daniel Ioan
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:82: 103-121 被引量:112
标识
DOI:10.1016/j.jechem.2023.03.026
摘要

Lithium-ion batteries are the most widely used energy storage devices, for which the accurate prediction of the remaining useful life (RUL) is crucial to their reliable operation and accident prevention. This work thoroughly investigates the developmental trend of RUL prediction with machine learning (ML) algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions. The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper. The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers. Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented. The research core of common ML algorithms is given first time in a uniform format in chronological order. The algorithms are also compared from aspects of accuracy and characteristics comprehensively, and the novel and general improvement directions or opportunities including improvement in early prediction, local regeneration modeling, physical information fusion, generalized transfer learning, and hardware implementation are further outlooked. Finally, the methods of battery lifetime extension are summarized, and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked. Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future. This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Shutai采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
duobage完成签到,获得积分10
2秒前
打打应助STAR采纳,获得10
4秒前
4秒前
不知发布了新的文献求助30
6秒前
王雅完成签到 ,获得积分10
7秒前
淡淡碧玉发布了新的文献求助10
7秒前
neilphilosci完成签到 ,获得积分10
7秒前
陆黑暗完成签到 ,获得积分10
9秒前
全幼儿园最戏精完成签到 ,获得积分10
10秒前
含蓄凡柔发布了新的文献求助10
10秒前
11秒前
梦想飞翔发布了新的文献求助10
12秒前
13秒前
善学以致用应助元骏采纳,获得10
16秒前
Fx发布了新的文献求助10
16秒前
16秒前
缥缈的芷卉完成签到 ,获得积分10
18秒前
20秒前
辽阳太子完成签到 ,获得积分10
21秒前
duobage发布了新的文献求助10
22秒前
24秒前
kevin发布了新的文献求助30
24秒前
希望天下0贩的0应助QiLe采纳,获得10
27秒前
斯人完成签到 ,获得积分10
28秒前
28秒前
29秒前
Fx完成签到,获得积分10
29秒前
31秒前
瓷儿发布了新的文献求助10
31秒前
浮游应助deway采纳,获得10
31秒前
薛wen晶完成签到 ,获得积分10
31秒前
34秒前
34秒前
mafukairi发布了新的文献求助10
35秒前
逝水无痕完成签到,获得积分20
37秒前
火火完成签到 ,获得积分10
38秒前
方不居发布了新的文献求助10
38秒前
cgx发布了新的文献求助30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868581
求助须知:如何正确求助?哪些是违规求助? 4160010
关于积分的说明 12900456
捐赠科研通 3914482
什么是DOI,文献DOI怎么找? 2149839
邀请新用户注册赠送积分活动 1168298
关于科研通互助平台的介绍 1070739