亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The development of machine learning-based remaining useful life prediction for lithium-ion batteries

电池(电) 电池容量 可靠性工程 锂离子电池 计算机科学 机器学习 人工智能 工程类 功率(物理) 物理 量子力学
作者
Xingjun Li,Dan Yu,Søren Byg Vilsen,Store Daniel Ioan
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:82: 103-121 被引量:60
标识
DOI:10.1016/j.jechem.2023.03.026
摘要

Lithium-ion batteries are the most widely used energy storage devices, for which the accurate prediction of the remaining useful life (RUL) is crucial to their reliable operation and accident prevention. This work thoroughly investigates the developmental trend of RUL prediction with machine learning (ML) algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions. The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper. The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers. Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented. The research core of common ML algorithms is given first time in a uniform format in chronological order. The algorithms are also compared from aspects of accuracy and characteristics comprehensively, and the novel and general improvement directions or opportunities including improvement in early prediction, local regeneration modeling, physical information fusion, generalized transfer learning, and hardware implementation are further outlooked. Finally, the methods of battery lifetime extension are summarized, and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked. Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future. This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一_发布了新的文献求助10
6秒前
JamesPei应助Marciu33采纳,获得10
18秒前
23秒前
搜集达人应助一_采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
35秒前
41秒前
一_发布了新的文献求助10
46秒前
Lucas应助一_采纳,获得10
1分钟前
1分钟前
1分钟前
一_发布了新的文献求助10
1分钟前
1分钟前
羫孔发布了新的文献求助10
1分钟前
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
2分钟前
羫孔发布了新的文献求助10
2分钟前
李健的小迷弟应助一_采纳,获得10
2分钟前
2分钟前
科研通AI2S应助体贴花卷采纳,获得10
2分钟前
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
一_发布了新的文献求助10
2分钟前
松松松茸关注了科研通微信公众号
3分钟前
一_完成签到,获得积分10
3分钟前
123456xq完成签到 ,获得积分10
3分钟前
酷波er应助松松松茸采纳,获得10
3分钟前
Eason完成签到,获得积分10
3分钟前
xiazhq完成签到,获得积分10
4分钟前
松松松茸完成签到,获得积分10
4分钟前
4分钟前
松松松茸发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
hugeyoung发布了新的文献求助10
5分钟前
打打应助hugeyoung采纳,获得10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622396
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881