亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 地震学 物理 量子力学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:143
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的行天完成签到,获得积分10
刚刚
ceeray23发布了新的文献求助20
3秒前
杰_骜不驯完成签到 ,获得积分10
9秒前
tong完成签到 ,获得积分10
20秒前
尾状叶完成签到 ,获得积分10
20秒前
Gaolongzhen完成签到 ,获得积分10
22秒前
静寂焉应助科研通管家采纳,获得10
23秒前
aiai发布了新的文献求助10
23秒前
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
gexzygg应助科研通管家采纳,获得10
23秒前
gexzygg应助科研通管家采纳,获得10
23秒前
美满的馒头完成签到 ,获得积分10
28秒前
gaijiaofanv发布了新的文献求助10
28秒前
赵悦发布了新的文献求助10
28秒前
李国铭发布了新的文献求助30
34秒前
40秒前
qiu完成签到,获得积分10
51秒前
善学以致用应助leungzzz采纳,获得10
52秒前
1分钟前
阿仁不想搞科研完成签到 ,获得积分10
1分钟前
leungzzz发布了新的文献求助10
1分钟前
迷人的跳跳糖完成签到 ,获得积分10
1分钟前
Lucas应助ceeray23采纳,获得20
1分钟前
1分钟前
hwjg发布了新的文献求助10
1分钟前
咸鸭蛋完成签到 ,获得积分10
1分钟前
繁荣的凡完成签到 ,获得积分10
1分钟前
fighting完成签到,获得积分10
1分钟前
小凯完成签到 ,获得积分10
1分钟前
贪玩的谷芹完成签到 ,获得积分10
2分钟前
王小拉完成签到 ,获得积分10
2分钟前
爱听歌契完成签到 ,获得积分10
2分钟前
温婉的凝芙完成签到 ,获得积分10
2分钟前
lunar完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得20
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558406
求助须知:如何正确求助?哪些是违规求助? 4643430
关于积分的说明 14670992
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808