Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 地震学 物理 量子力学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:105
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dio完成签到,获得积分10
1秒前
1秒前
美好莹芝完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
田様应助zzzsh采纳,获得10
2秒前
小马甲应助青阳采纳,获得10
2秒前
A宇发布了新的文献求助10
3秒前
3秒前
3秒前
phl发布了新的文献求助10
3秒前
cy发布了新的文献求助10
3秒前
4秒前
劉平果完成签到 ,获得积分10
4秒前
6秒前
发电的皮卡丘完成签到,获得积分20
6秒前
6秒前
6秒前
dio发布了新的文献求助10
6秒前
rilin完成签到,获得积分10
7秒前
灵巧大地发布了新的文献求助10
8秒前
8秒前
汉堡包应助张珂采纳,获得10
8秒前
9秒前
9秒前
9秒前
CR7应助3080采纳,获得20
10秒前
10秒前
感动新烟发布了新的文献求助10
10秒前
11秒前
四辈发布了新的文献求助10
11秒前
12秒前
yznfly应助精明的荔枝采纳,获得40
13秒前
13秒前
梁三柏发布了新的文献求助10
13秒前
14秒前
14秒前
科目三应助用一生追杀采纳,获得10
15秒前
小芒果完成签到,获得积分0
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794