已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 量子力学 物理 地震学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:120
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Camellia完成签到,获得积分10
刚刚
2秒前
甜菜发布了新的文献求助10
2秒前
所所应助斯文明杰采纳,获得10
2秒前
月下发布了新的文献求助10
3秒前
新新关注了科研通微信公众号
5秒前
橘笙完成签到,获得积分10
6秒前
乐乐应助mianmian0118采纳,获得10
6秒前
alwry发布了新的文献求助10
7秒前
精明的姿完成签到,获得积分20
7秒前
7秒前
绿琦完成签到,获得积分10
11秒前
周周发布了新的文献求助10
11秒前
12秒前
12秒前
木子完成签到,获得积分10
13秒前
杨家欢完成签到,获得积分10
15秒前
小猫撸桨完成签到,获得积分10
15秒前
开心尔芙发布了新的文献求助30
15秒前
16秒前
无奈的盼望完成签到 ,获得积分10
18秒前
科研通AI5应助missfast采纳,获得10
22秒前
23秒前
23秒前
核桃应助开心尔芙采纳,获得10
23秒前
24秒前
26秒前
机灵柚子发布了新的文献求助60
29秒前
GY发布了新的文献求助10
29秒前
30秒前
YZ完成签到,获得积分10
30秒前
33秒前
nkcyn完成签到,获得积分10
35秒前
35秒前
SCI的李完成签到 ,获得积分10
35秒前
36秒前
善学以致用应助冰山泥采纳,获得10
37秒前
可爱的函函应助JayChou采纳,获得10
37秒前
呆萌剑封完成签到,获得积分10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969