Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 地震学 物理 量子力学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:77
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyn发布了新的文献求助10
4秒前
一叶扁舟完成签到 ,获得积分10
4秒前
细腻天蓝完成签到 ,获得积分10
8秒前
yinlu完成签到 ,获得积分10
8秒前
刘佳婷完成签到,获得积分20
10秒前
哎嘿应助科研通管家采纳,获得10
12秒前
Loooong应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
哎嘿应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
Loooong应助科研通管家采纳,获得20
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
哎嘿应助科研通管家采纳,获得10
12秒前
兜兜应助科研通管家采纳,获得10
12秒前
Loooong应助科研通管家采纳,获得10
13秒前
Loooong应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
Loooong应助科研通管家采纳,获得20
13秒前
ycw992847127完成签到,获得积分10
13秒前
dengy完成签到,获得积分10
13秒前
风趣的灵枫完成签到 ,获得积分10
13秒前
烂漫的蜡烛完成签到 ,获得积分10
14秒前
CipherSage应助刘佳婷采纳,获得10
18秒前
路见不平完成签到,获得积分10
18秒前
franca2005完成签到 ,获得积分10
22秒前
一棵草完成签到,获得积分10
23秒前
薛布慧完成签到 ,获得积分10
24秒前
浩气长存完成签到 ,获得积分10
27秒前
Migue应助skskysky采纳,获得10
27秒前
懵懂的梦秋完成签到,获得积分20
28秒前
YQT完成签到 ,获得积分10
29秒前
筱谭完成签到 ,获得积分10
31秒前
聪慧的南风完成签到 ,获得积分10
34秒前
沉沉完成签到 ,获得积分0
40秒前
粗心的板栗完成签到 ,获得积分10
47秒前
48秒前
落后的皮卡丘完成签到,获得积分10
51秒前
感动归尘完成签到,获得积分10
54秒前
赖建琛完成签到 ,获得积分10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899841
捐赠科研通 2472868
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142