亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 地震学 物理 量子力学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:143
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doctor_quyi发布了新的文献求助10
刚刚
wangran_778完成签到,获得积分10
2秒前
4秒前
5秒前
李义志完成签到,获得积分10
8秒前
8秒前
佳佳发布了新的文献求助10
8秒前
啊哦发布了新的文献求助30
9秒前
今后应助李义志采纳,获得10
11秒前
科研通AI6应助黄黄黄采纳,获得10
11秒前
无极微光应助缓慢的藏鸟采纳,获得20
12秒前
贱小贱完成签到,获得积分10
12秒前
ZYP发布了新的文献求助10
15秒前
科研狗完成签到 ,获得积分10
16秒前
无花果应助好了没了采纳,获得10
16秒前
科研通AI6应助啊哦采纳,获得30
21秒前
黎娅完成签到 ,获得积分10
22秒前
24秒前
27秒前
好了没了完成签到,获得积分10
27秒前
挚智完成签到 ,获得积分10
29秒前
29秒前
好了没了发布了新的文献求助10
30秒前
lele完成签到,获得积分10
30秒前
迷路世立完成签到,获得积分10
31秒前
33秒前
FashionBoy应助vinss66home采纳,获得10
34秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
35秒前
遇晚完成签到,获得积分10
42秒前
肥牛完成签到,获得积分10
43秒前
46秒前
解你所忧完成签到 ,获得积分10
47秒前
SciGPT应助浅呀呀呀采纳,获得10
49秒前
ZepHyR发布了新的文献求助10
51秒前
55秒前
李义志发布了新的文献求助10
1分钟前
魁梧的衫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
LingC完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264