Intelligent Machinery Fault Diagnosis With Event-Based Camera

计算机科学 人工智能 事件(粒子物理) 断层(地质) 计算机视觉 实时计算 地质学 地震学 物理 量子力学
作者
Xiang Li,Shupeng Yu,Yaguo Lei,Naipeng Li,Bin Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 380-389 被引量:143
标识
DOI:10.1109/tii.2023.3262854
摘要

Event-based cameras are the emerging bioinspired technology in vision sensing. Different from the traditional standard cameras, the event-based cameras asynchronously record the brightness change per pixel, and have the great merits of high temporal resolution, low energy consumption, high dynamic range, etc. While the event-based cameras have been initially exploited in several common vision-based tasks in the recent years, the investigation on machine condition monitoring problem is quite limited. This article offers the first attempt in the current literature on exploring the contactless event vision data for machine fault diagnosis. A vibration event representation is proposed to transform the event records into typical data samples, and a deep convolutional neural network model is used for processing the event information. To enhance the model robustness against environmental noisy vision events, an event data augmentation method is proposed to introduce variations of the event patterns. A deep representation clustering method is further proposed to improve the pattern recognition performance with respect to different machine health conditions. Experiments on the event vision-based rotating machine fault diagnosis problem are carried out. It is extensively validated that high fault diagnosis accuracies can be obtained using the vision data from the event-based cameras, which are competitive with the popular accelerometer data. Considering the properties of flexibility, portability, and data recognizability, the event-based cameras thus provide a promising new tool for contactless machine health condition monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸辣田田子完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
peiter发布了新的文献求助10
1秒前
1秒前
horizon发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
时光完成签到,获得积分10
3秒前
李知恩完成签到,获得积分10
3秒前
沉沉完成签到 ,获得积分10
3秒前
穆赤发布了新的文献求助10
3秒前
Wu发布了新的文献求助10
4秒前
An发布了新的文献求助10
4秒前
漫鱼完成签到,获得积分10
4秒前
烟花应助易琚采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
流川发布了新的文献求助10
5秒前
5秒前
章鱼发布了新的文献求助10
5秒前
chenhouhan发布了新的文献求助10
5秒前
牛曙东完成签到,获得积分10
6秒前
里里应助刘研采纳,获得10
6秒前
6秒前
所所应助付艳采纳,获得10
7秒前
7秒前
Lucas应助第七个星球采纳,获得10
7秒前
mooncake发布了新的文献求助10
7秒前
zx发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
Ludi完成签到,获得积分10
8秒前
伏波完成签到,获得积分0
8秒前
Hello应助KeYang采纳,获得10
9秒前
小马发布了新的文献求助30
9秒前
西出阳关完成签到,获得积分10
9秒前
jinlin完成签到,获得积分10
9秒前
10秒前
丘比特应助爱听歌采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271