Strategies of Multi-Step-ahead Forecasting for Chaotic Time Series using Autoencoder and LSTM Neural Networks: A Comparative Study

自编码 计算机科学 人工神经网络 时间序列 系列(地层学) 混乱的 均方误差 人工智能 循环神经网络 深度学习 多输入多输出 算法 机器学习 数学 统计 频道(广播) 古生物学 生物 计算机网络
作者
Nguyen Ngoc Phien,Tuan Anh Duong,Jan Platoš
标识
DOI:10.1145/3582177.3582187
摘要

There has been a lot of research on the use of deep neural networks in forecasting time series and chaotic time series data. However, there exist very few works on multi-step ahead forecasting in chaotic time series using deep neural networks. Several strategies that deal with multi-step-ahead forecasting problem have been proposed in literature: recursive (or iterated) strategy, direct strategy, a combination of both the recursive and direct strategies, called DirRec, the Multiple-Input Multiple-Output (MIMO) strategy, and the fifth strategy, called DirMO which combines Direct and MIMO strategies. This paper aims to propose a new deep learning model for chaotic time series forecasting: LSTM-based stacked autoencoder and answer the research question: which strategy for multi-step ahead forecasting using LSTM-based stacked autoencoder yields the best performance for chaotic time series. We evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean-Absolute-Percentage Error (MAPE). The experimental results on synthetic and real-world chaotic time series datasets reveal that MIMO strategy provides the best predictive accuracy for chaotic time series forecasting using LSTM-based stacked autoencoder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
2秒前
4秒前
4秒前
砺行应助简简单单采纳,获得10
4秒前
安详的御姐完成签到,获得积分10
5秒前
5秒前
子勿语发布了新的文献求助10
5秒前
6秒前
6秒前
Runtu1121完成签到 ,获得积分10
6秒前
可爱的函函应助Anthocyanidin采纳,获得10
6秒前
亦玉发布了新的文献求助10
6秒前
科研通AI6应助zzzdx采纳,获得30
7秒前
白衣轻叹完成签到,获得积分10
8秒前
寒冷凌瑶发布了新的文献求助10
8秒前
等待的皮皮虾完成签到,获得积分10
8秒前
柠檬果发布了新的文献求助10
8秒前
十是十发布了新的文献求助10
9秒前
风大的早上完成签到 ,获得积分10
9秒前
10秒前
甲子雨发布了新的文献求助10
10秒前
10秒前
Havoc发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487