Strategies of Multi-Step-ahead Forecasting for Chaotic Time Series using Autoencoder and LSTM Neural Networks: A Comparative Study

自编码 计算机科学 人工神经网络 时间序列 系列(地层学) 混乱的 均方误差 人工智能 循环神经网络 深度学习 多输入多输出 算法 机器学习 数学 统计 频道(广播) 古生物学 生物 计算机网络
作者
Nguyen Ngoc Phien,Tuan Anh Duong,Jan Platoš
标识
DOI:10.1145/3582177.3582187
摘要

There has been a lot of research on the use of deep neural networks in forecasting time series and chaotic time series data. However, there exist very few works on multi-step ahead forecasting in chaotic time series using deep neural networks. Several strategies that deal with multi-step-ahead forecasting problem have been proposed in literature: recursive (or iterated) strategy, direct strategy, a combination of both the recursive and direct strategies, called DirRec, the Multiple-Input Multiple-Output (MIMO) strategy, and the fifth strategy, called DirMO which combines Direct and MIMO strategies. This paper aims to propose a new deep learning model for chaotic time series forecasting: LSTM-based stacked autoencoder and answer the research question: which strategy for multi-step ahead forecasting using LSTM-based stacked autoencoder yields the best performance for chaotic time series. We evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean-Absolute-Percentage Error (MAPE). The experimental results on synthetic and real-world chaotic time series datasets reveal that MIMO strategy provides the best predictive accuracy for chaotic time series forecasting using LSTM-based stacked autoencoder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
Hui完成签到,获得积分10
刚刚
852应助科研通管家采纳,获得10
刚刚
wy.he应助科研通管家采纳,获得20
1秒前
wanci应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
鸣笛应助科研通管家采纳,获得20
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
不安青牛应助科研通管家采纳,获得10
1秒前
不安青牛应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爱笑的小羽毛完成签到,获得积分20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
华仔应助en采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
lzj应助科研通管家采纳,获得20
2秒前
研友_VZG7GZ应助阿良采纳,获得10
2秒前
铁柱完成签到 ,获得积分20
3秒前
3秒前
wzz发布了新的文献求助10
3秒前
烂漫冬卉完成签到,获得积分10
3秒前
枝芽完成签到,获得积分10
3秒前
3秒前
Starset发布了新的文献求助10
4秒前
zfl发布了新的文献求助10
4秒前
积极的凝云完成签到,获得积分10
4秒前
茶蛋完成签到 ,获得积分10
4秒前
木子秀完成签到,获得积分10
5秒前
5秒前
DerekFan发布了新的文献求助10
6秒前
6秒前
6秒前
安详晓亦发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536