亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strategies of Multi-Step-ahead Forecasting for Chaotic Time Series using Autoencoder and LSTM Neural Networks: A Comparative Study

自编码 计算机科学 人工神经网络 时间序列 系列(地层学) 混乱的 均方误差 人工智能 循环神经网络 深度学习 多输入多输出 算法 机器学习 数学 统计 频道(广播) 古生物学 生物 计算机网络
作者
Nguyen Ngoc Phien,Tuan Anh Duong,Jan Platoš
标识
DOI:10.1145/3582177.3582187
摘要

There has been a lot of research on the use of deep neural networks in forecasting time series and chaotic time series data. However, there exist very few works on multi-step ahead forecasting in chaotic time series using deep neural networks. Several strategies that deal with multi-step-ahead forecasting problem have been proposed in literature: recursive (or iterated) strategy, direct strategy, a combination of both the recursive and direct strategies, called DirRec, the Multiple-Input Multiple-Output (MIMO) strategy, and the fifth strategy, called DirMO which combines Direct and MIMO strategies. This paper aims to propose a new deep learning model for chaotic time series forecasting: LSTM-based stacked autoencoder and answer the research question: which strategy for multi-step ahead forecasting using LSTM-based stacked autoencoder yields the best performance for chaotic time series. We evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean-Absolute-Percentage Error (MAPE). The experimental results on synthetic and real-world chaotic time series datasets reveal that MIMO strategy provides the best predictive accuracy for chaotic time series forecasting using LSTM-based stacked autoencoder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小解完成签到,获得积分10
3秒前
5秒前
xjynh发布了新的文献求助10
6秒前
Smar_zcl应助null采纳,获得50
13秒前
内向雪旋完成签到,获得积分10
14秒前
完美世界应助xjynh采纳,获得10
15秒前
18秒前
21秒前
24秒前
仁爱裘发布了新的文献求助10
25秒前
duduwind发布了新的文献求助10
29秒前
null重新开启了善泽文献应助
30秒前
af完成签到,获得积分10
35秒前
47秒前
1分钟前
liushangyuan发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
一一完成签到,获得积分10
2分钟前
2分钟前
CHENG发布了新的文献求助20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
无情翅膀完成签到,获得积分10
2分钟前
kingwill应助CHENG采纳,获得20
2分钟前
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692