Structure-based virtual screening and molecular dynamics simulations for detecting novel candidates for allosteric inhibition of EGFRT790M

虚拟筛选 变构调节 分子动力学 化学 对接(动物) 化学图书馆 结合能 分子 结合位点 计算化学 小分子 受体 生物化学 有机化学 物理 护理部 医学 核物理学
作者
Güneş Çoban
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/07391102.2023.2194425
摘要

Structure-based virtual screening (SBVS) was applied to predict lead compounds for the allosteric inhibition of epidermal growth factor receptor (EGFR) by screening the library of chemical compounds prepared from the e-molecules chemical database. The library of chemical compounds consisting of 133,083 ligands was composed by evaluating the chemical and physical properties of e-molecules chemicals. The prepared library was screened by CCDC Gold software in the allosteric binding site of EGFRT790M using the library and virtual screening default parameters to filter out, respectively. The GOLD fitness scores 75 and 80 were selected as threshold values for the library and virtual screening processes, respectively. After the docking study, molecular dynamics simulations (MDS) of the top 25 compounds were built for calculating binding free energies from their MDS trajectories. MM-GBSA binding free energies for the compounds were computed from 20 ns MDS, 50 ns MDS and 200 ns MDS trajectories to filter out the candidates. Following MM-GBSA/MM-PBSA binding free energy calculations, six compounds were detected as the most promising candidates for allosteric inhibition of EGFRT790M. The dynamic behaviors of final compounds inside EGFR T790M were searched using structure stability, binding modes and energy decomposition analysis. Besides, the estimated inhibitors were exposed to docking study and MM-GBSA/MM-PBSA binding free energy calculations inside wild-type EGFR, respectively, to be determined their selectivity towards mutant form. Five of the estimated inhibitors displayed estimated selectivity towards EGFRT790M. Besides the ADMET properties of the estimated inhibitors were predicted by PreAdmet tools.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅问寒应助起風了采纳,获得10
2秒前
海陵吹风鸡完成签到,获得积分10
3秒前
6秒前
8秒前
YTT发布了新的文献求助10
8秒前
NIUB发布了新的文献求助10
11秒前
科研通AI5应助聂立双采纳,获得10
11秒前
鑫搭发布了新的文献求助20
12秒前
13秒前
14秒前
17秒前
17秒前
海洋完成签到,获得积分10
20秒前
Lucifer完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
聂立双发布了新的文献求助10
23秒前
海洋发布了新的文献求助10
25秒前
大个应助深林盛世采纳,获得10
25秒前
CYY发布了新的文献求助10
27秒前
28秒前
赘婿应助微信研友采纳,获得10
34秒前
动漫大师发布了新的文献求助20
34秒前
37秒前
Akim应助General采纳,获得10
38秒前
38秒前
41秒前
xingsixs完成签到 ,获得积分10
41秒前
深林盛世发布了新的文献求助10
42秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321353
关于积分的说明 10205016
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783