A Multi-Scale Attention Framework for Automated Polyp Localization and Keyframe Extraction From Colonoscopy Videos

计算机科学 人工智能 结肠镜检查 编码(集合论) 深度学习 比例(比率) 金标准(测试) 特征提取 计算机视觉 机器学习 结直肠癌 癌症 放射科 医学 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言
作者
Vanshali Sharma,Pradipta Sasmal,M. K. Bhuyan,Pradip K. Das,Yuji Iwahori,Kunio Kasugai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2023.3315518
摘要

Colonoscopy video acquisition has been tremendously increased for retrospective analysis, comprehensive inspection, and detection of polyps to diagnose colorectal cancer (CRC). However, extracting meaningful clinical information from colonoscopy videos requires an enormous amount of reviewing time, which burdens the surgeons considerably. To reduce the manual efforts, we propose a first end-to-end automated multi-stage deep learning framework to extract an adequate number of clinically significant frames, i.e., keyframes from colonoscopy videos. The proposed framework comprises multiple stages that employ different deep learning models to select keyframes, which are high-quality, non-redundant polyp frames capturing multi-views of polyps. In one of the stages of our framework, we also propose a novel multi-scale attention-based model, YcOLOn, for polyp localization, which generates ROI and prediction scores crucial for obtaining keyframes. We further designed a GUI application to navigate through different stages. Extensive evaluation in real-world scenarios involving patient-wise and cross-dataset validations shows the efficacy of the proposed approach. The framework removes 96.3% and 94.02% frames, reduces detection processing time by 38.28% and 59.99%, and increases mAP by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respectively. The source code is available at https://github.com/Vanshali/KeyframeExtraction Note to Practitioners —The widespread acceptance of colonoscopy procedures as a gold standard for CRC screening is constrained by the massive amount of data recorded during the process that needs to be manually reviewed. Such manual procedures are burdensome and induce human diagnostic errors. This article suggests an automated framework to extract keyframes (important frames) from colonoscopy videos that can efficiently represent the clinically relevant information captured in the video streams. This is achieved by the automated removal of uninformative and highly correlated frames, which do not add to clinical findings. The approach ensures diversity among keyframes and provides clinicians with a multi-view of polyps for easy resection. In addition, the proposed multi-scale attention-based model improves the polyp localization performance, which further helps in refining the keyframe selection process. The comprehensive experimental results corroborate that discarding insignificant frames can enhance polyp detection and localization performance and reduce computational requirements. The study estimates 30% to 60% time saving for clinicians during video screening. In clinical practices, the proposed automated framework and our designed GUI would enable surgeons to visualize the essential data better with minimal manual interventions and assist in precise polyp resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
猪猪hero完成签到,获得积分10
10秒前
12秒前
浮游应助guo采纳,获得10
13秒前
英吉利25发布了新的文献求助10
13秒前
hui发布了新的文献求助10
18秒前
学习要认真喽完成签到,获得积分10
19秒前
20秒前
西山菩提发布了新的文献求助200
21秒前
奥丁不言语完成签到 ,获得积分10
24秒前
义气凡阳完成签到,获得积分10
25秒前
LYriQue发布了新的文献求助10
29秒前
整齐的蜻蜓完成签到 ,获得积分10
34秒前
pluto应助guo采纳,获得10
37秒前
ZHANG完成签到 ,获得积分10
38秒前
42秒前
醉熏的菲鹰完成签到 ,获得积分10
42秒前
苏以禾完成签到 ,获得积分10
46秒前
star发布了新的文献求助10
48秒前
gdgd完成签到,获得积分10
48秒前
西弗勒斯麻完成签到,获得积分10
50秒前
哈鲤完成签到,获得积分10
51秒前
Tina完成签到 ,获得积分10
56秒前
guozizi完成签到,获得积分10
56秒前
徐自豪完成签到 ,获得积分10
57秒前
秦梭璋完成签到 ,获得积分10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
guo完成签到,获得积分10
1分钟前
1分钟前
star完成签到,获得积分10
1分钟前
Lucas应助LYriQue采纳,获得10
1分钟前
lichanshen完成签到,获得积分10
1分钟前
boxi完成签到,获得积分10
1分钟前
冷艳的友瑶完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304170
求助须知:如何正确求助?哪些是违规求助? 4450738
关于积分的说明 13849759
捐赠科研通 4337666
什么是DOI,文献DOI怎么找? 2381590
邀请新用户注册赠送积分活动 1376576
关于科研通互助平台的介绍 1343579