亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Scale Attention Framework for Automated Polyp Localization and Keyframe Extraction From Colonoscopy Videos

计算机科学 人工智能 结肠镜检查 编码(集合论) 深度学习 比例(比率) 金标准(测试) 特征提取 计算机视觉 机器学习 结直肠癌 癌症 放射科 医学 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言
作者
Vanshali Sharma,Pradipta Sasmal,M. K. Bhuyan,Pradip K. Das,Yuji Iwahori,Kunio Kasugai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2023.3315518
摘要

Colonoscopy video acquisition has been tremendously increased for retrospective analysis, comprehensive inspection, and detection of polyps to diagnose colorectal cancer (CRC). However, extracting meaningful clinical information from colonoscopy videos requires an enormous amount of reviewing time, which burdens the surgeons considerably. To reduce the manual efforts, we propose a first end-to-end automated multi-stage deep learning framework to extract an adequate number of clinically significant frames, i.e., keyframes from colonoscopy videos. The proposed framework comprises multiple stages that employ different deep learning models to select keyframes, which are high-quality, non-redundant polyp frames capturing multi-views of polyps. In one of the stages of our framework, we also propose a novel multi-scale attention-based model, YcOLOn, for polyp localization, which generates ROI and prediction scores crucial for obtaining keyframes. We further designed a GUI application to navigate through different stages. Extensive evaluation in real-world scenarios involving patient-wise and cross-dataset validations shows the efficacy of the proposed approach. The framework removes 96.3% and 94.02% frames, reduces detection processing time by 38.28% and 59.99%, and increases mAP by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respectively. The source code is available at https://github.com/Vanshali/KeyframeExtraction Note to Practitioners —The widespread acceptance of colonoscopy procedures as a gold standard for CRC screening is constrained by the massive amount of data recorded during the process that needs to be manually reviewed. Such manual procedures are burdensome and induce human diagnostic errors. This article suggests an automated framework to extract keyframes (important frames) from colonoscopy videos that can efficiently represent the clinically relevant information captured in the video streams. This is achieved by the automated removal of uninformative and highly correlated frames, which do not add to clinical findings. The approach ensures diversity among keyframes and provides clinicians with a multi-view of polyps for easy resection. In addition, the proposed multi-scale attention-based model improves the polyp localization performance, which further helps in refining the keyframe selection process. The comprehensive experimental results corroborate that discarding insignificant frames can enhance polyp detection and localization performance and reduce computational requirements. The study estimates 30% to 60% time saving for clinicians during video screening. In clinical practices, the proposed automated framework and our designed GUI would enable surgeons to visualize the essential data better with minimal manual interventions and assist in precise polyp resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Eraaaaa采纳,获得10
27秒前
寻道图强应助踏实的芸遥采纳,获得30
41秒前
希望天下0贩的0应助pdm采纳,获得10
42秒前
46秒前
Eraaaaa发布了新的文献求助10
51秒前
52秒前
善学以致用应助C111采纳,获得10
56秒前
NexusExplorer应助Dr. Chen采纳,获得10
1分钟前
1分钟前
科研通AI2S应助清爽的音响采纳,获得10
1分钟前
1分钟前
YangSihan发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助YangSihan采纳,获得10
1分钟前
C111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
pdm发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dr. Chen完成签到,获得积分10
1分钟前
Dr. Chen发布了新的文献求助10
1分钟前
1分钟前
1分钟前
mjy完成签到,获得积分10
1分钟前
科研通AI2S应助别急我先送采纳,获得30
2分钟前
温暖的盼山完成签到,获得积分10
2分钟前
呵呵完成签到,获得积分10
2分钟前
2分钟前
2分钟前
慕斯完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助陶珺珺采纳,获得30
2分钟前
C9完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
脚踏实地呢完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133924
求助须知:如何正确求助?哪些是违规求助? 2784829
关于积分的说明 7768635
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297221
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791