A Multi-Scale Attention Framework for Automated Polyp Localization and Keyframe Extraction From Colonoscopy Videos

计算机科学 人工智能 结肠镜检查 编码(集合论) 深度学习 比例(比率) 金标准(测试) 特征提取 计算机视觉 机器学习 结直肠癌 癌症 放射科 医学 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言
作者
Vanshali Sharma,Pradipta Sasmal,M. K. Bhuyan,Pradip K. Das,Yuji Iwahori,Kunio Kasugai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2023.3315518
摘要

Colonoscopy video acquisition has been tremendously increased for retrospective analysis, comprehensive inspection, and detection of polyps to diagnose colorectal cancer (CRC). However, extracting meaningful clinical information from colonoscopy videos requires an enormous amount of reviewing time, which burdens the surgeons considerably. To reduce the manual efforts, we propose a first end-to-end automated multi-stage deep learning framework to extract an adequate number of clinically significant frames, i.e., keyframes from colonoscopy videos. The proposed framework comprises multiple stages that employ different deep learning models to select keyframes, which are high-quality, non-redundant polyp frames capturing multi-views of polyps. In one of the stages of our framework, we also propose a novel multi-scale attention-based model, YcOLOn, for polyp localization, which generates ROI and prediction scores crucial for obtaining keyframes. We further designed a GUI application to navigate through different stages. Extensive evaluation in real-world scenarios involving patient-wise and cross-dataset validations shows the efficacy of the proposed approach. The framework removes 96.3% and 94.02% frames, reduces detection processing time by 38.28% and 59.99%, and increases mAP by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respectively. The source code is available at https://github.com/Vanshali/KeyframeExtraction Note to Practitioners —The widespread acceptance of colonoscopy procedures as a gold standard for CRC screening is constrained by the massive amount of data recorded during the process that needs to be manually reviewed. Such manual procedures are burdensome and induce human diagnostic errors. This article suggests an automated framework to extract keyframes (important frames) from colonoscopy videos that can efficiently represent the clinically relevant information captured in the video streams. This is achieved by the automated removal of uninformative and highly correlated frames, which do not add to clinical findings. The approach ensures diversity among keyframes and provides clinicians with a multi-view of polyps for easy resection. In addition, the proposed multi-scale attention-based model improves the polyp localization performance, which further helps in refining the keyframe selection process. The comprehensive experimental results corroborate that discarding insignificant frames can enhance polyp detection and localization performance and reduce computational requirements. The study estimates 30% to 60% time saving for clinicians during video screening. In clinical practices, the proposed automated framework and our designed GUI would enable surgeons to visualize the essential data better with minimal manual interventions and assist in precise polyp resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助yefeng采纳,获得10
1秒前
1秒前
英姑应助66采纳,获得10
1秒前
hefang完成签到,获得积分10
1秒前
2秒前
Jasper应助时雨采纳,获得30
3秒前
FashionBoy应助Tang采纳,获得30
4秒前
天天快乐应助erhao采纳,获得10
4秒前
迅猛2002发布了新的文献求助10
4秒前
任性白容完成签到,获得积分10
4秒前
xz发布了新的文献求助10
5秒前
5秒前
赘婿应助王宏峰采纳,获得10
5秒前
hopen发布了新的文献求助10
6秒前
含糊的冰淇淋完成签到,获得积分10
6秒前
bkagyin应助pupu采纳,获得10
6秒前
6秒前
嗯呢嗯呢应助August采纳,获得200
7秒前
8秒前
脑洞疼应助磕学少女采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
乐乐应助小鱼儿采纳,获得10
11秒前
11秒前
星辰大海应助如沐风采纳,获得10
11秒前
feifei发布了新的文献求助10
11秒前
充电宝应助迅猛2002采纳,获得10
12秒前
SciGPT应助勤劳的音响采纳,获得10
13秒前
秀丽雁芙发布了新的文献求助10
14秒前
hopen完成签到,获得积分10
14秒前
大盆发布了新的文献求助10
15秒前
15秒前
852应助大方小苏采纳,获得10
15秒前
16秒前
无用的老董西完成签到 ,获得积分10
16秒前
香香发布了新的文献求助10
16秒前
神勇中道完成签到,获得积分10
17秒前
大个应助liuying采纳,获得10
17秒前
17秒前
脑洞疼应助TT2022采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959120
求助须知:如何正确求助?哪些是违规求助? 4219993
关于积分的说明 13139275
捐赠科研通 4003365
什么是DOI,文献DOI怎么找? 2190793
邀请新用户注册赠送积分活动 1205401
关于科研通互助平台的介绍 1116823