亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Scale Attention Framework for Automated Polyp Localization and Keyframe Extraction From Colonoscopy Videos

计算机科学 人工智能 结肠镜检查 编码(集合论) 深度学习 比例(比率) 金标准(测试) 特征提取 计算机视觉 机器学习 结直肠癌 癌症 放射科 医学 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言
作者
Vanshali Sharma,Pradipta Sasmal,M. K. Bhuyan,Pradip K. Das,Yuji Iwahori,Kunio Kasugai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2023.3315518
摘要

Colonoscopy video acquisition has been tremendously increased for retrospective analysis, comprehensive inspection, and detection of polyps to diagnose colorectal cancer (CRC). However, extracting meaningful clinical information from colonoscopy videos requires an enormous amount of reviewing time, which burdens the surgeons considerably. To reduce the manual efforts, we propose a first end-to-end automated multi-stage deep learning framework to extract an adequate number of clinically significant frames, i.e., keyframes from colonoscopy videos. The proposed framework comprises multiple stages that employ different deep learning models to select keyframes, which are high-quality, non-redundant polyp frames capturing multi-views of polyps. In one of the stages of our framework, we also propose a novel multi-scale attention-based model, YcOLOn, for polyp localization, which generates ROI and prediction scores crucial for obtaining keyframes. We further designed a GUI application to navigate through different stages. Extensive evaluation in real-world scenarios involving patient-wise and cross-dataset validations shows the efficacy of the proposed approach. The framework removes 96.3% and 94.02% frames, reduces detection processing time by 38.28% and 59.99%, and increases mAP by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respectively. The source code is available at https://github.com/Vanshali/KeyframeExtraction Note to Practitioners —The widespread acceptance of colonoscopy procedures as a gold standard for CRC screening is constrained by the massive amount of data recorded during the process that needs to be manually reviewed. Such manual procedures are burdensome and induce human diagnostic errors. This article suggests an automated framework to extract keyframes (important frames) from colonoscopy videos that can efficiently represent the clinically relevant information captured in the video streams. This is achieved by the automated removal of uninformative and highly correlated frames, which do not add to clinical findings. The approach ensures diversity among keyframes and provides clinicians with a multi-view of polyps for easy resection. In addition, the proposed multi-scale attention-based model improves the polyp localization performance, which further helps in refining the keyframe selection process. The comprehensive experimental results corroborate that discarding insignificant frames can enhance polyp detection and localization performance and reduce computational requirements. The study estimates 30% to 60% time saving for clinicians during video screening. In clinical practices, the proposed automated framework and our designed GUI would enable surgeons to visualize the essential data better with minimal manual interventions and assist in precise polyp resection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
azizo完成签到,获得积分10
9秒前
呆呆的猕猴桃完成签到 ,获得积分10
25秒前
33秒前
43秒前
TiAmo完成签到 ,获得积分10
45秒前
50秒前
57秒前
徐志豪完成签到,获得积分20
57秒前
徐志豪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
HeWang发布了新的文献求助10
1分钟前
HeWang完成签到,获得积分10
1分钟前
CipherSage应助研友_拓跋戾采纳,获得10
1分钟前
梅思寒完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
研友_拓跋戾完成签到,获得积分10
2分钟前
蛙蛙完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
王一博完成签到,获得积分10
3分钟前
王一博发布了新的文献求助10
3分钟前
3分钟前
3分钟前
简单慕凝发布了新的文献求助100
3分钟前
Fairy完成签到,获得积分10
3分钟前
3分钟前
wwrz完成签到,获得积分20
3分钟前
动听的涵山完成签到,获得积分10
3分钟前
打打应助wwrz采纳,获得30
3分钟前
独特的忆彤完成签到 ,获得积分10
3分钟前
3分钟前
吕懿发布了新的文献求助30
3分钟前
路漫漫其修远兮完成签到 ,获得积分10
4分钟前
吕懿完成签到,获得积分10
4分钟前
meeteryu完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723941
求助须知:如何正确求助?哪些是违规求助? 5282860
关于积分的说明 15299423
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616606
邀请新用户注册赠送积分活动 1566494
关于科研通互助平台的介绍 1523352