A Multi-Scale Attention Framework for Automated Polyp Localization and Keyframe Extraction From Colonoscopy Videos

计算机科学 人工智能 结肠镜检查 编码(集合论) 深度学习 比例(比率) 金标准(测试) 特征提取 计算机视觉 机器学习 结直肠癌 癌症 放射科 医学 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言
作者
Vanshali Sharma,Pradipta Sasmal,M. K. Bhuyan,Pradip K. Das,Yuji Iwahori,Kunio Kasugai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2023.3315518
摘要

Colonoscopy video acquisition has been tremendously increased for retrospective analysis, comprehensive inspection, and detection of polyps to diagnose colorectal cancer (CRC). However, extracting meaningful clinical information from colonoscopy videos requires an enormous amount of reviewing time, which burdens the surgeons considerably. To reduce the manual efforts, we propose a first end-to-end automated multi-stage deep learning framework to extract an adequate number of clinically significant frames, i.e., keyframes from colonoscopy videos. The proposed framework comprises multiple stages that employ different deep learning models to select keyframes, which are high-quality, non-redundant polyp frames capturing multi-views of polyps. In one of the stages of our framework, we also propose a novel multi-scale attention-based model, YcOLOn, for polyp localization, which generates ROI and prediction scores crucial for obtaining keyframes. We further designed a GUI application to navigate through different stages. Extensive evaluation in real-world scenarios involving patient-wise and cross-dataset validations shows the efficacy of the proposed approach. The framework removes 96.3% and 94.02% frames, reduces detection processing time by 38.28% and 59.99%, and increases mAP by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respectively. The source code is available at https://github.com/Vanshali/KeyframeExtraction Note to Practitioners —The widespread acceptance of colonoscopy procedures as a gold standard for CRC screening is constrained by the massive amount of data recorded during the process that needs to be manually reviewed. Such manual procedures are burdensome and induce human diagnostic errors. This article suggests an automated framework to extract keyframes (important frames) from colonoscopy videos that can efficiently represent the clinically relevant information captured in the video streams. This is achieved by the automated removal of uninformative and highly correlated frames, which do not add to clinical findings. The approach ensures diversity among keyframes and provides clinicians with a multi-view of polyps for easy resection. In addition, the proposed multi-scale attention-based model improves the polyp localization performance, which further helps in refining the keyframe selection process. The comprehensive experimental results corroborate that discarding insignificant frames can enhance polyp detection and localization performance and reduce computational requirements. The study estimates 30% to 60% time saving for clinicians during video screening. In clinical practices, the proposed automated framework and our designed GUI would enable surgeons to visualize the essential data better with minimal manual interventions and assist in precise polyp resection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟小熊发布了新的文献求助10
1秒前
YC完成签到 ,获得积分10
1秒前
李健应助群山采纳,获得10
2秒前
flyia完成签到,获得积分10
2秒前
大模型应助F_echo采纳,获得10
3秒前
李某发布了新的文献求助10
3秒前
YANGJIE6发布了新的文献求助10
4秒前
迷你的羽毛完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
追寻鞋垫应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小诸葛应助科研通管家采纳,获得30
6秒前
852应助libaiyao采纳,获得20
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
潇洒荷花发布了新的文献求助10
7秒前
高飞完成签到 ,获得积分10
8秒前
morena发布了新的文献求助10
9秒前
施梦得发布了新的文献求助10
9秒前
9秒前
10秒前
小虾米发布了新的文献求助10
10秒前
CipherSage应助WuLujie采纳,获得10
11秒前
Caroline发布了新的文献求助10
11秒前
11秒前
刘隽轩发布了新的文献求助10
11秒前
大雪参完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577828
求助须知:如何正确求助?哪些是违规求助? 4662923
关于积分的说明 14743771
捐赠科研通 4603565
什么是DOI,文献DOI怎么找? 2526517
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465605