Unveiling enhanced electron-mediated peroxymonosulfate activation for degradation of emerging organic pollutants

催化作用 污染物 电子转移 化学 降级(电信) 电子 原子轨道 光化学 化学工程 化学物理 纳米技术 材料科学 物理 有机化学 计算机科学 电信 量子力学 工程类
作者
Junjie Xu,Yanchi Yao,Chao Zhu,Lun Lu,Qile Fang,Zhiqiao He,Shuang Song,Baoliang Chen,Yi Shen
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:341: 123356-123356 被引量:43
标识
DOI:10.1016/j.apcatb.2023.123356
摘要

The electron transfer pathway activated by peroxymonosulfate (PMS) has garnered significant attention for the removal of emerging organic pollutants from water. However, overcoming the two-step energy barriers involved in electron transport across reaction interfaces presents a formidable challenge. To surmount the two-step energy barriers of pollutant-catalyst and catalyst-PMS, a catalyst with nano-island structure was developed, forming efficient ternary catalytic interfaces with PMS and pollutants. The presence of atomic pairs within the catalyst punched through the electron transport channels, resulting in a pseudo-first-order kinetic rate of 2.06 min−1 for bisphenol A, which was 5.1 times higher than that of the control sample. The electronic coupling of atomic pairs exerted a profound impact on the splitting of d-orbitals, effectively elevating the d-orbital unoccupancy and reducing the two-step energy barriers encountered by electrons from pollutants to catalysts, and subsequently to PMS, which promoted efficient degradation of pollutants. Furthermore, through the association of two-step energy barrier, the feasibility of utilizing the orbital interaction as a descriptor of the degradation rate by electron-mediated PMS activation was demonstrated. Additionally, the intermediates generated through electron transfer pathway exhibited a lower risk of bioaccumulation. This work inspires insights into the electron-mediated mechanism of multinary catalytic interface reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fang完成签到,获得积分10
1秒前
Maggie完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
啊哦完成签到 ,获得积分10
2秒前
会飞的猪发布了新的文献求助10
4秒前
5秒前
科研通AI5应助神勇太清采纳,获得10
6秒前
Rain_BJ完成签到,获得积分10
6秒前
7秒前
爱听歌的依霜完成签到,获得积分10
7秒前
skj你考六级完成签到,获得积分10
8秒前
simon完成签到,获得积分10
8秒前
汉堡包应助qq采纳,获得10
9秒前
hhhhh哈哈哈完成签到,获得积分10
9秒前
欧皇降霖发布了新的文献求助10
10秒前
慕青应助会飞的猪采纳,获得10
11秒前
Muller完成签到,获得积分10
12秒前
蜡笔小新发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
chen完成签到,获得积分10
14秒前
15秒前
天天快乐应助饱满的亦旋采纳,获得10
15秒前
砰砰彭发布了新的文献求助10
16秒前
17秒前
潮汐发布了新的文献求助10
17秒前
18秒前
浮游应助程青青采纳,获得10
18秒前
野性的山雁关注了科研通微信公众号
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助150
21秒前
李爱国应助cj采纳,获得10
22秒前
qq发布了新的文献求助10
22秒前
科研通AI6应助龙天宇采纳,获得10
22秒前
jxy发布了新的文献求助10
22秒前
aaa发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234