A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swy完成签到,获得积分10
1秒前
大大怪发布了新的文献求助10
1秒前
莴苣发布了新的文献求助10
1秒前
mayi完成签到,获得积分10
2秒前
Master关注了科研通微信公众号
3秒前
Foch发布了新的文献求助10
3秒前
6秒前
6秒前
慕慕给慕慕的求助进行了留言
6秒前
7秒前
fengyuenanche完成签到,获得积分10
8秒前
9秒前
爆米花应助大大怪采纳,获得10
10秒前
10秒前
10秒前
南城完成签到 ,获得积分10
11秒前
小桶爸爸完成签到,获得积分10
12秒前
赘婿应助ybwei2008_163采纳,获得10
12秒前
科研通AI2S应助胖墩儿驾到采纳,获得10
13秒前
菠萝水手完成签到,获得积分10
14秒前
14秒前
丘比特应助小瑞采纳,获得10
16秒前
爆米花应助健壮的蘑菇采纳,获得10
16秒前
多摩川的烟花少年完成签到,获得积分10
17秒前
Jay发布了新的文献求助10
17秒前
zulpikar发布了新的文献求助10
18秒前
小黑之家完成签到 ,获得积分10
18秒前
NexusExplorer应助土豆不吃鱼采纳,获得10
19秒前
飞快的雅青完成签到 ,获得积分10
21秒前
21秒前
23秒前
23秒前
Waaly完成签到,获得积分10
24秒前
26秒前
Li完成签到 ,获得积分10
27秒前
27秒前
27秒前
wansida完成签到,获得积分10
28秒前
美好冰蓝发布了新的文献求助10
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278