A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助Zyy采纳,获得10
2秒前
羅卜貳发布了新的文献求助10
3秒前
爆米花应助NINI采纳,获得10
3秒前
Monicamo完成签到,获得积分10
3秒前
4秒前
威武十八完成签到,获得积分10
4秒前
6秒前
7秒前
8秒前
HT-Wang发布了新的文献求助10
8秒前
keroro完成签到,获得积分10
8秒前
qgyj发布了新的文献求助10
9秒前
德鲁大叔完成签到,获得积分10
10秒前
怕黑嘉熙发布了新的文献求助10
10秒前
TsutsumiRyuu发布了新的文献求助10
10秒前
10秒前
11秒前
孤独元容完成签到,获得积分10
11秒前
13秒前
初淇发布了新的文献求助10
13秒前
orixero应助nyc采纳,获得10
13秒前
doctorman发布了新的文献求助20
14秒前
白影柒关注了科研通微信公众号
14秒前
15秒前
15秒前
zlzl发布了新的文献求助10
16秒前
Zyy发布了新的文献求助10
17秒前
Kiriya完成签到,获得积分10
17秒前
德鲁大叔发布了新的文献求助10
17秒前
陈预立发布了新的文献求助10
18秒前
小二郎应助zhangling采纳,获得10
19秒前
珍惜发布了新的文献求助10
19秒前
英俊的铭应助快哒哒哒采纳,获得10
20秒前
猫尾巴发布了新的文献求助10
21秒前
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228