A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jzt12138发布了新的文献求助10
1秒前
1秒前
青青闭上眼睛完成签到,获得积分10
3秒前
3秒前
英姑应助fufu采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
大豆子完成签到,获得积分10
7秒前
浮游应助青青闭上眼睛采纳,获得10
7秒前
7秒前
王贤平发布了新的文献求助10
7秒前
8秒前
10秒前
万能图书馆应助清脆安南采纳,获得10
10秒前
天真苑睐完成签到,获得积分10
11秒前
Leo完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Azure完成签到,获得积分10
12秒前
Akim应助美好斓采纳,获得10
15秒前
遇见发布了新的文献求助10
15秒前
小豆子完成签到,获得积分10
17秒前
Jane完成签到 ,获得积分10
19秒前
20秒前
20秒前
22秒前
TL111发布了新的文献求助10
22秒前
22秒前
wsd关闭了wsd文献求助
23秒前
boaster完成签到,获得积分10
23秒前
24秒前
gsq完成签到,获得积分10
26秒前
热情的未来完成签到,获得积分10
27秒前
红豆子完成签到,获得积分10
27秒前
0000完成签到,获得积分10
27秒前
清脆安南发布了新的文献求助10
28秒前
29秒前
CodeCraft应助冷静伟诚采纳,获得10
29秒前
研友_VZG7GZ应助retortt采纳,获得10
30秒前
朱珏虹发布了新的文献求助10
31秒前
YE完成签到,获得积分10
31秒前
端庄忆梅完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109