A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁豆完成签到,获得积分10
刚刚
zwnwinner发布了新的文献求助10
1秒前
没烦恼发布了新的文献求助10
1秒前
Patience完成签到,获得积分10
1秒前
1秒前
从容的小凡完成签到,获得积分20
2秒前
2秒前
一只盒子完成签到,获得积分10
2秒前
恰逢发布了新的文献求助10
3秒前
聪明的大树完成签到,获得积分10
3秒前
nn发布了新的文献求助30
3秒前
桐桐应助xzjz采纳,获得10
4秒前
Jasmine完成签到,获得积分10
5秒前
合适夏天完成签到,获得积分10
5秒前
5秒前
6秒前
隐形曼青应助Xue采纳,获得10
6秒前
Summer完成签到 ,获得积分10
6秒前
叶若相怜完成签到,获得积分20
6秒前
晴云发布了新的文献求助10
6秒前
6秒前
无极微光应助momo采纳,获得20
6秒前
欢呼的飞荷完成签到,获得积分10
7秒前
科研通AI6应助1816013153采纳,获得10
7秒前
WXR完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
合适的柏柳完成签到,获得积分10
8秒前
开心蛋挞完成签到,获得积分10
8秒前
jack完成签到,获得积分10
9秒前
852应助海棠先雪采纳,获得10
9秒前
快乐小天使完成签到,获得积分10
9秒前
凤梨头完成签到,获得积分10
9秒前
9秒前
9秒前
代纤绮完成签到,获得积分10
10秒前
10秒前
CipherSage应助Catloaf采纳,获得10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474