A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助feilong采纳,获得10
刚刚
Hsu发布了新的文献求助10
刚刚
fyf发布了新的文献求助10
刚刚
星辰大海应助佳丽采纳,获得10
刚刚
chen发布了新的文献求助20
刚刚
所所应助yiren采纳,获得30
刚刚
沐浴清风完成签到 ,获得积分10
1秒前
浮游应助FJM采纳,获得10
1秒前
sky发布了新的文献求助10
1秒前
1秒前
妞妞发布了新的文献求助10
1秒前
小楼初晴完成签到,获得积分10
1秒前
王大卫发布了新的文献求助10
1秒前
lucyliu发布了新的文献求助10
1秒前
2秒前
shelemi发布了新的文献求助10
2秒前
佩奇小猪关注了科研通微信公众号
2秒前
2秒前
乐乐应助霸气忙内采纳,获得10
2秒前
温暖寻雪完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
C.Z.Young发布了新的文献求助10
4秒前
4秒前
于浩发布了新的文献求助10
4秒前
4秒前
刘妞妞应助爱听歌老1采纳,获得10
4秒前
乐乐应助沉默手套采纳,获得10
5秒前
5秒前
5秒前
FashionBoy应助愉快的戎采纳,获得10
6秒前
6秒前
6秒前
温暖寻雪发布了新的文献求助50
7秒前
李健应助粉面菜蛋采纳,获得10
7秒前
7秒前
彩虹发布了新的文献求助10
8秒前
similar发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560552
求助须知:如何正确求助?哪些是违规求助? 3986658
关于积分的说明 12343469
捐赠科研通 3657426
什么是DOI,文献DOI怎么找? 2014919
邀请新用户注册赠送积分活动 1049681
科研通“疑难数据库(出版商)”最低求助积分说明 937867