A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sharkmelon应助Amo采纳,获得10
刚刚
1秒前
wabfye完成签到,获得积分20
1秒前
1秒前
星辰大海应助明天的我采纳,获得10
1秒前
iNk应助科科采纳,获得10
1秒前
2秒前
2秒前
zgrmws应助怡然的夏之采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
thunder完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
KAZEN发布了新的文献求助20
4秒前
满意的聋五完成签到,获得积分10
5秒前
5秒前
漫漫完成签到,获得积分10
5秒前
英姑应助高贵的如曼采纳,获得10
5秒前
5秒前
斯文的馒头完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
桐桐应助欢欢采纳,获得30
6秒前
cablebot发布了新的文献求助10
7秒前
梦会故乡发布了新的文献求助10
7秒前
niNe3YUE应助结实的XMZ采纳,获得10
7秒前
科目三应助mlx采纳,获得10
7秒前
gstaihn发布了新的文献求助10
8秒前
zhihaiyu完成签到,获得积分10
8秒前
尘晨发布了新的文献求助10
9秒前
刘英岑发布了新的文献求助10
9秒前
smottom应助小贱采纳,获得10
9秒前
踏雾发布了新的文献求助10
9秒前
10秒前
10秒前
NAWAZ完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163