A contrastive learning framework for safety information extraction in construction

文档 计算机科学 关系抽取 管道(软件) 背景(考古学) 任务(项目管理) 过程(计算) 关系(数据库) 人工智能 自然语言处理 F1得分 信息抽取 实体链接 精确性和召回率 情报检索 机器学习 数据挖掘 知识库 工程类 程序设计语言 古生物学 系统工程 生物
作者
Jiajing Liu,Hanbin Luo,Weili Fang,Peter E.D. Love
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102194-102194 被引量:5
标识
DOI:10.1016/j.aei.2023.102194
摘要

Typically named entity recognition (NER) and relation extraction (RE) from safety documentation (e.g., accident reports) adopt a pipeline processing approach whereby tasks are split into two sub-tasks. As a result, error propagation occurs between components, and useful information from one task may go unexploited by the other. Additionally, training sets to perform NER and RE from safety documentation are often limited and context-specific. Thus, our research addresses the following question: How can we accurately identify entities and extract relations from safety documentation using limited training sets? This paper utilizes 'contrastive learning' to tackle our research question. It proposes a contrastive learning-based cascade binary tagging framework (CasRel) to automatically and synchronously extract entities and relations from safety documents. A five-fold cross-validation process is used to validate the effectiveness and feasibility of our approach. Results from the validation process achieve an average precision of 77.8%, recall of 58.7%, and F1-score of 66.9%, outperforming CasRel with an increase of about 10% in precision, 5% in recall, and 7% in F1-score. Thus, our approach can accurately recognize entities and extract relations from safety documentation. The contributions of our study are twofold: (1) an improved unified model is developed to recognize and extract the entity and relation from safety documents to reduce error propagation and improve its accuracy; and (2) the concept of 'contrastive learning' is introduced in the design of the joint entity and relation extraction model with limited training sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助章丘吴彦祖采纳,获得10
刚刚
刚刚
wuwenyu发布了新的文献求助10
1秒前
zxy发布了新的文献求助10
1秒前
凌尘完成签到,获得积分10
1秒前
慕青应助samuel_wang采纳,获得10
2秒前
林夕6936发布了新的文献求助10
2秒前
2秒前
Ava应助Ryan采纳,获得10
2秒前
wu完成签到,获得积分10
3秒前
眼睛大的冰蓝完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得20
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
朝与暮完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Jojo发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
yang完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
5秒前
爱睡觉的森森完成签到,获得积分10
5秒前
ilihe应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
十三发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
ilihe应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得200
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770