亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Incentive for Cross-Silo Federated Learning in IIoT: A Multiagent Reinforcement Learning Approach

计算机科学 强化学习 激励 过程(计算) 功能(生物学) 机制(生物学) 知识管理 分布式计算 人工智能 进化生物学 生物 认识论 操作系统 哲学 经济 微观经济学
作者
Shijing Yuan,Beiyu Dong,Hongtao Lv,Hongze Liu,Hongyang Chen,Chentao Wu,Song Guo,Yue Ding,Jie Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 15048-15058 被引量:5
标识
DOI:10.1109/jiot.2023.3315770
摘要

In the Industrial Internet of Things (IIoT), cross-silo federated learning (CSFL) enables entities, such as manufacturers and suppliers to train global models for optimizing production processes while ensuring data privacy. A well-designed incentive mechanism is essential to persuade clients to contribute data resources. However, existing methodologies overlook the dynamic nature of the training process, where the accuracy of the globally trained model and the client's data ownership change over time. Furthermore, the majority of previous research assumes a defined functional relationship between the data contribution and the model accuracy, which is infeasible in realistic and dynamic training environments. To address these challenges, we design a novel adaptive mechanism for CSFL that inspires organizations to contribute data resources in a dynamic training environment with the aim of maximizing their long-term payoffs. This mechanism leverages multiagent reinforcement learning (MARL) to ascertain near-optimal data contribution strategies from potential game histories without necessitating private organizational information or a precise accuracy function. Experimental results indicate that our mechanism achieves adaptive incentive in dynamic environments and effectively enhances the long-term payoffs of organizations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
四季刻歌发布了新的文献求助10
17秒前
19秒前
32秒前
George发布了新的文献求助10
35秒前
JamesPei应助郭楠楠采纳,获得10
36秒前
艾路完成签到,获得积分10
43秒前
研友_ngqgY8完成签到,获得积分10
51秒前
JamesPei应助温暖的乐蓉采纳,获得10
55秒前
55秒前
郭楠楠发布了新的文献求助10
1分钟前
1分钟前
比格大王应助badyoungboy采纳,获得10
1分钟前
江经纬完成签到,获得积分20
1分钟前
顾矜应助郭楠楠采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
隐形不凡完成签到,获得积分10
2分钟前
温暖的乐蓉关注了科研通微信公众号
2分钟前
李桂芳完成签到,获得积分10
2分钟前
2分钟前
急诊守夜人完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
robin完成签到 ,获得积分10
2分钟前
万能图书馆应助HH采纳,获得10
3分钟前
吾日三省吾身完成签到 ,获得积分10
3分钟前
英姑应助风华正茂采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得50
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287