Adaptive Incentive for Cross-Silo Federated Learning in IIoT: A Multiagent Reinforcement Learning Approach

计算机科学 强化学习 激励 过程(计算) 功能(生物学) 机制(生物学) 知识管理 分布式计算 人工智能 进化生物学 生物 认识论 操作系统 哲学 经济 微观经济学
作者
Shijing Yuan,Beiyu Dong,Hongtao Lv,Hongze Liu,Hongyang Chen,Chentao Wu,Song Guo,Yue Ding,Jie Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 15048-15058 被引量:5
标识
DOI:10.1109/jiot.2023.3315770
摘要

In the Industrial Internet of Things (IIoT), cross-silo federated learning (CSFL) enables entities, such as manufacturers and suppliers to train global models for optimizing production processes while ensuring data privacy. A well-designed incentive mechanism is essential to persuade clients to contribute data resources. However, existing methodologies overlook the dynamic nature of the training process, where the accuracy of the globally trained model and the client's data ownership change over time. Furthermore, the majority of previous research assumes a defined functional relationship between the data contribution and the model accuracy, which is infeasible in realistic and dynamic training environments. To address these challenges, we design a novel adaptive mechanism for CSFL that inspires organizations to contribute data resources in a dynamic training environment with the aim of maximizing their long-term payoffs. This mechanism leverages multiagent reinforcement learning (MARL) to ascertain near-optimal data contribution strategies from potential game histories without necessitating private organizational information or a precise accuracy function. Experimental results indicate that our mechanism achieves adaptive incentive in dynamic environments and effectively enhances the long-term payoffs of organizations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助中中中采纳,获得10
刚刚
英俊的铭应助lixiaofan采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
xuan完成签到,获得积分10
2秒前
2秒前
夜风发布了新的文献求助20
2秒前
拉长的夜梦完成签到,获得积分10
3秒前
3秒前
4秒前
zlf发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
852应助clear采纳,获得10
5秒前
dreamboat完成签到,获得积分10
5秒前
朝天完成签到,获得积分10
6秒前
研友_宋文昊完成签到,获得积分10
7秒前
科研通AI6应助稳重的凡桃采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
Espoir完成签到,获得积分10
8秒前
9秒前
嘿嘿发布了新的文献求助30
9秒前
酷波er应助Nell采纳,获得10
9秒前
jie完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
丘比特应助水123采纳,获得10
11秒前
11秒前
桐桐应助zhiyuanren采纳,获得10
11秒前
11秒前
李绅语发布了新的文献求助10
11秒前
鳗鱼忆南发布了新的文献求助10
13秒前
syh完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366