亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TDFNet: Transformer-Based Deep-Scale Fusion Network for Multimodal Emotion Recognition

计算机科学 深度学习 人工智能 变压器 多模式学习 情感计算 情绪识别 深信不疑网络 特征学习 机器学习 工程类 电气工程 电压
作者
Zhengdao Zhao,Yuhua Wang,Guang Shen,Yuezhu Xu,Jiayuan Zhang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3771-3782 被引量:2
标识
DOI:10.1109/taslp.2023.3316458
摘要

As deep learning technology research continues to progress, artificial intelligence technology is gradually empowering various fields. To achieve a more natural human-computer interaction experience, how to accurately recognize emotional state of speech interactions has become a new research hotspot. Sequence modeling methods based on deep learning techniques have promoted the development of emotion recognition, but the mainstream methods still suffer from insufficient multimodal information interaction, difficulty in learning emotion-related features, and low recognition accuracy. In this paper, we propose a transformer-based deep-scale fusion network (TDFNet) for multimodal emotion recognition, solving the aforementioned problems. The multimodal embedding (ME) module in TDFNet uses pretrained models to alleviate the data scarcity problem by providing a priori knowledge of multimodal information to the model with the help of a large amount of unlabeled data. In addition, a mutual transformer (MT) module is introduced to learn multimodal emotional commonality and speaker-related emotional features to improve contextual emotional semantic understanding. In addition, we design a novel emotion feature learning method named the deep-scale transformer (DST), which further improves emotion recognition by aligning multimodal features and learning multiscale emotion features through GRUs with shared weights. To comparatively evaluate the performance of TDFNet, experiments are conducted with the IEMOCAP corpus under three reasonable data splitting strategies. The experimental results show that TDFNet achieves 82.08% WA and 82.57% UA in RA data splitting, which leads to 1.78% WA and 1.17% UA improvements over the previous state-of-the-art method, respectively. Benefiting from the attentively aligned mutual correlations and fine-grained emotion-related features, TDFNet successfully achieves significant improvements in multimodal emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
莫冰雪完成签到 ,获得积分10
22秒前
科研通AI2S应助zhang采纳,获得10
46秒前
53秒前
小巫发布了新的文献求助10
59秒前
1分钟前
1分钟前
eccentric发布了新的文献求助10
1分钟前
1分钟前
eccentric完成签到,获得积分10
1分钟前
zhangxr发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Sandy完成签到 ,获得积分10
2分钟前
兴尽晚回舟完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
啊强完成签到 ,获得积分10
4分钟前
无限毛豆发布了新的文献求助10
4分钟前
xiaolang2004完成签到,获得积分10
4分钟前
上官若男应助无限毛豆采纳,获得10
4分钟前
莉莉安完成签到 ,获得积分10
4分钟前
4分钟前
knoren发布了新的文献求助10
5分钟前
DeaR完成签到 ,获得积分10
5分钟前
knoren完成签到,获得积分10
5分钟前
5分钟前
止戈发布了新的文献求助10
6分钟前
6分钟前
小巫发布了新的文献求助10
6分钟前
科研菜狗完成签到 ,获得积分10
6分钟前
小马甲应助lbjcp3采纳,获得10
7分钟前
小巫完成签到,获得积分10
7分钟前
7分钟前
lbjcp3发布了新的文献求助10
7分钟前
脑洞疼应助zhangxr采纳,获得10
8分钟前
丘比特应助科研通管家采纳,获得10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795269
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146