TDFNet: Transformer-Based Deep-Scale Fusion Network for Multimodal Emotion Recognition

计算机科学 深度学习 人工智能 变压器 多模式学习 情感计算 情绪识别 深信不疑网络 特征学习 机器学习 工程类 电气工程 电压
作者
Zhengdao Zhao,Yuhua Wang,Guang Shen,Yuezhu Xu,Jiayuan Zhang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3771-3782 被引量:2
标识
DOI:10.1109/taslp.2023.3316458
摘要

As deep learning technology research continues to progress, artificial intelligence technology is gradually empowering various fields. To achieve a more natural human-computer interaction experience, how to accurately recognize emotional state of speech interactions has become a new research hotspot. Sequence modeling methods based on deep learning techniques have promoted the development of emotion recognition, but the mainstream methods still suffer from insufficient multimodal information interaction, difficulty in learning emotion-related features, and low recognition accuracy. In this paper, we propose a transformer-based deep-scale fusion network (TDFNet) for multimodal emotion recognition, solving the aforementioned problems. The multimodal embedding (ME) module in TDFNet uses pretrained models to alleviate the data scarcity problem by providing a priori knowledge of multimodal information to the model with the help of a large amount of unlabeled data. In addition, a mutual transformer (MT) module is introduced to learn multimodal emotional commonality and speaker-related emotional features to improve contextual emotional semantic understanding. In addition, we design a novel emotion feature learning method named the deep-scale transformer (DST), which further improves emotion recognition by aligning multimodal features and learning multiscale emotion features through GRUs with shared weights. To comparatively evaluate the performance of TDFNet, experiments are conducted with the IEMOCAP corpus under three reasonable data splitting strategies. The experimental results show that TDFNet achieves 82.08% WA and 82.57% UA in RA data splitting, which leads to 1.78% WA and 1.17% UA improvements over the previous state-of-the-art method, respectively. Benefiting from the attentively aligned mutual correlations and fine-grained emotion-related features, TDFNet successfully achieves significant improvements in multimodal emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DDD完成签到,获得积分10
2秒前
2秒前
猪猪朱完成签到,获得积分20
2秒前
luoxijixian完成签到,获得积分10
3秒前
3秒前
追寻怜蕾发布了新的文献求助10
4秒前
楠楠完成签到,获得积分10
4秒前
昵称有敏感词应助李顺杰采纳,获得10
5秒前
昵称有敏感词应助李顺杰采纳,获得10
5秒前
5秒前
饭团关注了科研通微信公众号
5秒前
5秒前
乐观学姐发布了新的文献求助10
6秒前
tangpanpan完成签到,获得积分20
6秒前
踏实的涵阳完成签到,获得积分10
7秒前
chinaproteome完成签到,获得积分10
7秒前
好好好完成签到 ,获得积分10
7秒前
gehao完成签到,获得积分10
8秒前
bonnie发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
倒霉兔子完成签到,获得积分0
10秒前
CodeCraft应助瓜瓜采纳,获得10
10秒前
10秒前
chinaproteome发布了新的文献求助10
10秒前
大方的盼雁完成签到,获得积分10
11秒前
DJ发布了新的文献求助10
11秒前
sks完成签到,获得积分10
11秒前
张茜完成签到,获得积分10
12秒前
钟迪完成签到,获得积分10
12秒前
12秒前
动听雁山完成签到 ,获得积分10
13秒前
Orange应助北风采纳,获得10
15秒前
FIN应助acutelily采纳,获得10
15秒前
CipherSage应助bonnie采纳,获得10
15秒前
共享精神应助追风采纳,获得10
15秒前
MikeBot完成签到,获得积分20
15秒前
WTS完成签到,获得积分10
16秒前
dd完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479